- -

Solving differential eigenproblems via the spectral Tau method

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Solving differential eigenproblems via the spectral Tau method

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Vasconcelos, P. B. es_ES
dc.contributor.author Roman, Jose E. es_ES
dc.contributor.author Matos, J. M. A. es_ES
dc.date.accessioned 2023-02-28T19:00:46Z
dc.date.available 2023-02-28T19:00:46Z
dc.date.issued 2023-03 es_ES
dc.identifier.issn 1017-1398 es_ES
dc.identifier.uri http://hdl.handle.net/10251/192158
dc.description.abstract [EN] The spectral Tau method to compute eigenpairs of ordinary differential equations is implemented as part of the Tau Toolbox-a numerical library for the solution of integro-differential problems. This mathematical software enables a symbolic syntax to be applied to objects to manipulate and solve differential problems with ease and accuracy. The library is explained in detail and its application to various problems is illustrated: numerical approximations for linear, quadratic, and nonlinear differential eigenvalue problems. es_ES
dc.description.sponsorship This work was partially supported by the Spanish Agencia Estatal de Investigacion under grant PID2019-107379RB-I00/AEI/10.13039/501100011033, and by CMUP, which is financed by national funds through FCT-Fundacao para a Ciencia e a Tecnologia, I.P., under the project with reference UIDB/00144/2020. es_ES
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof Numerical Algorithms es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Spectral methods es_ES
dc.subject Differential eigenproblems es_ES
dc.subject Algebraic eigenvalue problems es_ES
dc.subject.classification CIENCIAS DE LA COMPUTACION E INTELIGENCIA ARTIFICIAL es_ES
dc.title Solving differential eigenproblems via the spectral Tau method es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s11075-022-01366-z es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-107379RB-I00/ES/ALGORITMOS PARALELOS Y SOFTWARE PARA METODOS ALGEBRAICOS EN ANALISIS DE DATOS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB%2F00144%2F2020/PT es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escola Tècnica Superior d'Enginyeria Informàtica es_ES
dc.description.bibliographicCitation Vasconcelos, PB.; Roman, JE.; Matos, JMA. (2023). Solving differential eigenproblems via the spectral Tau method. Numerical Algorithms. 92:1789-1811. https://doi.org/10.1007/s11075-022-01366-z es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1007/s11075-022-01366-z es_ES
dc.description.upvformatpinicio 1789 es_ES
dc.description.upvformatpfin 1811 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 92 es_ES
dc.relation.pasarela S\482305 es_ES
dc.contributor.funder AGENCIA ESTATAL DE INVESTIGACION es_ES
dc.contributor.funder Fundação para a Ciência e a Tecnologia, Portugal es_ES
dc.description.references Bai, Z., Demmel, J., Dongarra, J., Ruhe, A., Van Der Vorst, H.: Templates for the solution of algebraic eigenvalue problems: a practical guide. SIAM (2000). https://doi.org/10.1137/1.9780898719581 es_ES
dc.description.references Bailey, P.B., Everitt, W.N., Zettl, A.: Algorithm 810: the sleign2 Sturm-Liouville code. ACM Trans. Math. Softw. 27(2), 143–192 (2001). https://doi.org/10.1145/383738.383739 es_ES
dc.description.references Boyd, J.: Chebyshev and Fourier spectral methods. Dover publications Inc (2000) es_ES
dc.description.references Bridges, T.J., Morris, P.J.: Differential eigenvalue problems in which the parameter appears nonlinearly. J. Comput. Phys. 55(3), 437–460 (1984). https://doi.org/10.1016/0021-9991(84)90032-9 es_ES
dc.description.references Butler, K.M., Farrell, B.F.: Three-dimensional optimal perturbations in viscous shear flow. Phys. Fluids A-Fluid 4(8), 1637–1650 (1992). https://doi.org/10.1063/1.858386 es_ES
dc.description.references Charalambides, M., Waleffe, F.: Gegenbauer Tau methods with and without spurious eigenvalues. SIAM J. Numer. Anal. 47(1), 48–68 (2009). https://doi.org/10.1137/070704228 es_ES
dc.description.references Chaves, T., Ortiz, E.L.: On the numerical solution of two-point boundary value problems for linear differential equations. Z Angew Math. Mech. 48(6), 415–418 (1968). https://doi.org/10.1002/zamm.19680480607 es_ES
dc.description.references Dawkins, P.T., Dunbar, S.R., Douglass, R.W.: The origin and nature of spurious eigenvalues in the spectral Tau method. J. Comput. Phys. 147 (2), 441–462 (1998). https://doi.org/10.1006/jcph.1998.6095 es_ES
dc.description.references Dongarra, J., Straughan, B., Walker, D.: Chebyshev Tau-QZ algorithm methods for calculating spectra of hydrodynamic stability problems. Appl. Numer. Math. 22(4), 399–434 (1996). https://doi.org/10.1016/S0168-9274(96)00049-9 es_ES
dc.description.references Driscoll, T.A., Hale, N.: Rectangular spectral collocation. IMA J. Numer. Anal. 36(1), 108–132 (2016). https://doi.org/10.1093/imanum/dru062 es_ES
dc.description.references Driscoll, T.A., Hale, N., Trefethen, L.N.: Chebfun Guide (2014) es_ES
dc.description.references Gardner, D.R., Trogdon, S.A., Douglass, R.W.: A modified Tau spectral method that eliminates spurious eigenvalues. J. Comput. Phys. 80(1), 137–167 (1989). https://doi.org/10.1016/0021-9991(89)90093-4 es_ES
dc.description.references Gheorghiu, C.I.: Accurate spectral collocation computation of high order eigenvalues for singular Schrödinger equations. Computation 9(2), 2 (2021). https://doi.org/10.3390/computation9010002 es_ES
dc.description.references Gheorghiu, C.I., Pop, I.S.: A modified chebyshev-tau method for a hydrodynamic stability problem. In: Stancu, D.D. (ed.) Approximation and optimization. Transilvania Press, Cluj-Napoca, pp. 119–126 (1996) es_ES
dc.description.references Gheorghiu, C.I., Rommes, J.: Application of the Jacobi-Davidson method to accurate analysis of singular linear hydrodynamic stability problems. Int. J. Numer. Methods Fluids 71(3), 358–369 (2012). https://doi.org/10.1002/fld.3669 es_ES
dc.description.references Greenberg, L., Marletta, M.: Algorithm 775: the code SLEUTH for solving fourth-order Sturm-Liouville problems. ACM T. Math. Softw. 23(4), 453–493 (1997). https://doi.org/10.1145/279232.279231 es_ES
dc.description.references Güttel, S., Tisseur, F.: The nonlinear eigenvalue problem. Acta Numerica 26, 1–94 (2017). https://doi.org/10.1017/S0962492917000034 es_ES
dc.description.references Güttel, S., van Beeumen, R., Meerbergen, K., Michiels, W.: NLEIGS: a class of fully rational Krylov methods for nonlinear eigenvalue problems. SIAM J. Sci. Comput. 36(6), A2842–A2864 (2014). https://doi.org/10.1137/130935045 es_ES
dc.description.references Hammarling, S., Munro, C.J., Tisseur, F.: An algorithm for the complete solution of quadratic eigenvalue problems. ACM T. Math. Softw. 39(3), 1–19 (2013). https://doi.org/10.1145/2450153.2450156 es_ES
dc.description.references Lanczos, C.: Trigonometric interpolation of empirical and analytical functions. J. Math. Phys. 17(1–4), 123–199 (1938). https://doi.org/10.1002/sapm1938171123 es_ES
dc.description.references Ledoux, V., Daele, M.V., Berghe, G.V.: Matslise: a MATLAB package for the numerical solution of Sturm-Liouville and schrödinger equations. ACM Trans. Math. Softw. (TOMS) 31(4), 532–554 (2005). https://doi.org/10.1145/1114268.1114273 es_ES
dc.description.references Malik, M., Huy, D.H.: Vibration analysis of continuous systems by differential transformation. Appl. Math. Comput. 96(1), 17–26 (1998). https://doi.org/10.1016/S0096-3003(97)10076-5 es_ES
dc.description.references Matos, J.M.A., Rodrigues, M.J., Matos, J.C.: Explicit formulae for integro-differential operational matrices. Math. Comput. Sci. 15, 45–61 (2021). https://doi.org/10.1007/s11786-020-00465-1 es_ES
dc.description.references McFadden, G.B., Murray, B.T., Boisvert, R.F.: Elimination of spurious eigenvalues in the Chebyshev Tau spectral method. J. Comput. Phys. 91(1), 228–239 (1990). https://doi.org/10.1016/0021-9991(90)90012-P es_ES
dc.description.references Moler, C.B., Stewart, G.W.: An algorithm for generalized matrix eigenvalue problems. SIAM J. Numer. Anal. 10(2), 241–256 (1973). https://doi.org/10.1137/0710024 es_ES
dc.description.references Olver, S., Townsend, A.: A fast and well-conditioned spectral method. SIAM Rev. 55(3), 462–489 (2013). https://doi.org/10.1137/120865458 es_ES
dc.description.references Orszag, S.A.: Accurate solution of the Orr–Sommerfeld stability equation. J. Fluid Mech. 50 (04), 689 (1971). https://doi.org/10.1017/S0022112071002842 es_ES
dc.description.references Ortiz, E.L., Samara, H.: An operational approach to the Tau method for the numerical solution of non-linear differential equations. Computing 27, 15–26 (1981). https://doi.org/10.1007/BF02243435 es_ES
dc.description.references Ortiz, E.L., Samara, H.: Numerical solution of differential eigenvalue problems with an operational approach to the Tau method. Computing 31(2), 95–103 (1983). https://doi.org/10.1007/BF02259906 es_ES
dc.description.references Pruess, S., Fulton, C.T.: Mathematical software for Sturm-Liouville problems. ACM Trans. Math. Softw. (TOMS) 19(3), 360–376 (1993). https://doi.org/10.1145/155743.155791 es_ES
dc.description.references Pryce, J.D.: Error control of phase-function shooting methods for Sturm-Liouville problems. IMA J. Numer. Anal. 6(1), 103–123 (1986). https://doi.org/10.1093/imanum/6.1103 es_ES
dc.description.references Pryce, J.D., Marletta, M.: A new multi-purpose software package for Schrödinger and Sturm-Liouville computations. Comput. Phys. Commun. 62(1), 42–52 (1991). https://doi.org/10.1016/0010-4655(91)90119-6 es_ES
dc.description.references Reddy, S.C., Henningson, D.S.: Energy growth in viscous channel flows. J. Fluid Mech. 252, 209–238 (1993). https://doi.org/10.1017/S0022112093003738 es_ES
dc.description.references Reddy, S.C., Schmid, P.J., Henningson, D.S.: Pseudospectra of the Orr–Sommerfeld operator. SIAM J. Appl. Math. 53(1), 15–47 (1993). https://doi.org/10.1137/0153002 es_ES
dc.description.references Rommes, J.: Arnoldi and Jacobi-Davidson methods for generalized eigenvalue problems Ax = λBx with singular B. Math. Comput. 77 (262), 995–1016 (2007). https://doi.org/10.1090/s0025-5718-07-02040-6 es_ES
dc.description.references Solov’ëv, S.I.: Preconditioned Iterative methods for a class of nonlinear eigenvalue problems. Linear Algebra Appl. 415(1), 210–229 (2006 ). https://doi.org/10.1016/j.laa.2005.03.034 es_ES
dc.description.references Tisseur, F., Higham, N.J.: Structured pseudospectra for polynomial eigenvalue problems, with applications. SIAM J. Matrix Anal. Appl. 23(1), 187–208 (2001). https://doi.org/10.1137/S0895479800371451 es_ES
dc.description.references Trindade, M., Matos, J., Vasconcelos, P.B.: Towards a Lanczos’ τ-method toolkit for differential problems. Math Comp. Sci. 10(3), 313–329 (2016). https://doi.org/10.1007/s11786-016-0269-x es_ES
dc.description.references Yuan, S., Ye, K., Xiao, C., Kennedy, D., Williams, F.: Solution of regular second-and fourth-order Sturm-Liouville problems by exact dynamic stiffness method analogy. J. Eng. Math. 86(1), 157–173 (2014). https://doi.org/10.1007/s10665-013-9646-5 es_ES
dc.description.references Zebib, A.: Removal of spurious modes encountered in solving stability problems by spectral methods. J. Comput. Phys. 70(2), 521–525 (1987). https://doi.org/10.1016/0021-9991(87)90193-8 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem