- -

Probabilistic analysis of a class of impulsive linear random differential equations forced by stochastic processes admitting Karhunen-Loève expansions

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Probabilistic analysis of a class of impulsive linear random differential equations forced by stochastic processes admitting Karhunen-Loève expansions

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Cortés, J.-C. es_ES
dc.contributor.author Delgadillo-Alemán, Sandra E. es_ES
dc.contributor.author Ku-Carrillo, Roberto A. es_ES
dc.contributor.author Villanueva Micó, Rafael Jacinto es_ES
dc.date.accessioned 2023-03-01T19:02:19Z
dc.date.available 2023-03-01T19:02:19Z
dc.date.issued 2022-09 es_ES
dc.identifier.issn 1937-1632 es_ES
dc.identifier.uri http://hdl.handle.net/10251/192215
dc.description.abstract [EN] We study a full randomization of the complete linear differential equation subject to an infinite train of Dirac's delta functions applied at different time instants. The initial condition and coefficients of the differential equation are assumed to be absolutely continuous random variables, while the external or forcing term is a stochastic process. We first approximate the forcing term using the Karhunen-Loeve expansion, and then we take advantage of the Random Variable Transformation method to construct a formal approximation of the first probability density function (1-p.d.f.) of the solution. By imposing mild conditions on the model parameters, we prove the convergence of the aforementioned approximation to the exact 1-p.d.f. of the solution. All the theoretical findings are illustrated by means of two examples, where different types of probability distributions are assumed to model parameters. es_ES
dc.description.sponsorship This work has been supported by the Spanish grants PID2020-115270GB-I00 funded by MCIN/AEI/10.13039/501100011033 and AICO/2021/302 (Generalitat Valenciana) , and also by the Mexican Council of Science and Technology (CONACYT) program "Apoyos complementarios para estancias sabaticas vinculadas a la consolidacion de grupo de investigacion" and the Universidad Autonoma de Aguascalientes, PIM21-5, PIM21-7. es_ES
dc.language Inglés es_ES
dc.publisher American Institute of Mathematical Sciences es_ES
dc.relation.ispartof Discrete and Continuous Dynamical Systems. Series S es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Random differential equation es_ES
dc.subject Dirac's delta impulses es_ES
dc.subject Karhunen-Loeve expansion es_ES
dc.subject Wiener process es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title Probabilistic analysis of a class of impulsive linear random differential equations forced by stochastic processes admitting Karhunen-Loève expansions es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3934/dcdss.2022079 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2020-115270GB-I00/ES/ECUACIONES DIFERENCIALES ALEATORIAS. CUANTIFICACION DE LA INCERTIDUMBRE Y APLICACIONES/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//AICO%2F2021%2F302/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UAA//PIM21-7/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UAA//PIM21-5/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Facultad de Administración y Dirección de Empresas - Facultat d'Administració i Direcció d'Empreses es_ES
dc.description.bibliographicCitation Cortés, J.; Delgadillo-Alemán, SE.; Ku-Carrillo, RA.; Villanueva Micó, RJ. (2022). Probabilistic analysis of a class of impulsive linear random differential equations forced by stochastic processes admitting Karhunen-Loève expansions. Discrete and Continuous Dynamical Systems. Series S. 15(11):3131-3153. https://doi.org/10.3934/dcdss.2022079 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3934/dcdss.2022079 es_ES
dc.description.upvformatpinicio 3131 es_ES
dc.description.upvformatpfin 3153 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 15 es_ES
dc.description.issue 11 es_ES
dc.relation.pasarela S\456052 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder AGENCIA ESTATAL DE INVESTIGACION es_ES
dc.contributor.funder Universidad Autónoma de Aguascalientes es_ES
dc.contributor.funder Consejo Nacional de Ciencia y Tecnología, México es_ES
dc.description.references E. Allen, <i>Modeling with Itô Stochastic Differential Equations</i>, Springer, Dordrecht, 2007. es_ES
dc.description.references H. T. Banks, S. Hu.Nonlinear stochastic Markov processes and modeling uncertainty in populations, <i>Math. Biosci. Eng.</i>, <b>9</b> (2012), 1-25. es_ES
dc.description.references C. Braumann, <i>Introduction to Stochastic Differential Equations with Applications to Modelling in Biology and Finance</i>, Wiley, 2019. es_ES
dc.description.references S. Bunimovich-Mendrazitsky, H. Byrne, L. Stone.Mathematical model of pulsed immunotherapy for superficial bladder cancer, <i>Bull. Math. Biol.</i>, <b>70</b> (2008), 2055-2076. es_ES
dc.description.references C. Burgos, J.-C. Cortés, L. Villafuerte and R.-J. Villanueva, Mean square convergent numerical solutions of random fractional differential equations: Approximations of moments and density, <i>J. Comput. Appl. Math.</i>, <b>378</b> (2020), 112925, 14 pp. es_ES
dc.description.references T. Caraballo, J.-C. Cortés, A. Navarro-Quiles.Applying the random variable transformation method to solve a class of random linear differential equation with discrete delay, <i>Appl. Math. Comput.</i>, <b>356</b> (2019), 198-218. es_ES
dc.description.references G. Casella and R. L. Berger, <i>Statistical Inference</i>, Cengage Learning, 2007. es_ES
dc.description.references M. S. Cecconello, F. A. Dorini, G. Haeser.On fuzzy uncertainties on the logistic equation, <i>Fuzzy Sets and Systems</i>, <b>328</b> (2017), 107-121. es_ES
dc.description.references G. Chowell and H. Nishiura, Transmission dynamics and control of Ebola virus disease (EVD): A review, <i>BMC Medicine</i>, <b>12</b> (2014), Article number: 196, 17 pp. es_ES
dc.description.references J.-C. Cortés, S. Delgadillo-Alemán, R. Kú-Carrillo and R.-J. Villanueva, Full probabilistic analysis of random first-order linear differential equations with Dirac delta impulses appearing in control, <i>Mathematical Methods in the Applied Sciences</i>. es_ES
dc.description.references J.-C. Cortés, S. Delgadillo-Alemán, R. A. Kú-Carrillo and R.-J. Villanueva, Probabilistic analysis of a class of impulsive linear random differential equations via density functions, <i>Appl. Math. Lett.</i>, <b>121</b> (2021), 107519, 9 pp. es_ES
dc.description.references J. Cortés, L. Jódar, L. Villafuerte.Mean square numerical solution of random differential equations: Facts and possibilities, <i>Comput. Math. Appl.</i>, <b>53</b> (2007), 1098-1106. es_ES
dc.description.references J.-C. Cortés, A. Navarro-Quiles, J.-V. Romero, M.-D. Roselló.Computing the probability density function of non-autonomous first-order linear homogeneous differential equations with uncertainty, <i>J. Comput. Appl. Math.</i>, <b>337</b> (2018), 190-208. es_ES
dc.description.references F. A. Dorini, N. Bobko, L. B. Dorini.A note on the logistic equation subject to uncertainties in parameters, <i>Comput. Appl. Math.</i>, <b>37</b> (2018), 1496-1506. es_ES
dc.description.references F. A. Dorini, M. S. Cecconello, L. B. Dorini.On the logistic equation subject to uncertainties in the environmental carrying capacity and initial population density, <i>Commun. Nonlinear Sci. Numer. Simul.</i>, <b>33</b> (2016), 160-173. es_ES
dc.description.references A. El Fathi, M. R. Smaoui, V. Gingras, B. Boulet, A. Haidar.The artificial pancreas and meal control: An overview of postprandial glucose regulation in type 1 diabetes, <i>IEEE Control Syst.</i>, <b>38</b> (2018), 67-85. es_ES
dc.description.references L. C. Evans, <i>An Introduction to Stochastic Differential Equations</i>, American Mathematical Society, New York, 2013. es_ES
dc.description.references A. F. Filippov, <i>Differential Equations with Discontinuous Righthand Side</i>, Mathematics and Its Applications, Kluwer Academic Publishers, 1988. es_ES
dc.description.references P. Georgescu, G. Moroșanu.Impulsive perturbations of a three-trophic prey-dependent food chain system, <i>Math. Comput. Modelling</i>, <b>48</b> (2008), 975-997. es_ES
dc.description.references X. Han and P. E. Kloeden, <i>Random Ordinary Differential Equations and Their Numerical Solution</i>, Springer Nature, 2017. es_ES
dc.description.references A. Hussein, M. M. Selim.Solution of the stochastic radiative transfer equation with Rayleigh scattering using RVT technique, <i>Appl. Math. Comput.</i>, <b>218</b> (2012), 7193-7203. es_ES
dc.description.references P. E. Kloeden and E. Platen, <i>Numerical Solution of Sstochastic Differential Equations</i>, vol. 23, 3rd edition, Applications of Mathematics: Stochastic Modelling and Applied Probability, Springer, New York, 1999. es_ES
dc.description.references V. Lakshmikantham, D. D. Bainov and P. S. Simeonov, <i>Theory of Impulsive Differential Equations</i>, World Scientific, 1989. es_ES
dc.description.references X. Li, P. Li.Input-to-state stability of nonlinear systems: Event-triggered impulsive control, <i>IEEE Transactions on Automatic Control</i>, <b>67</b> (2022), 1460-1465. es_ES
dc.description.references X. Li and S. Song, <i>Impulsive Systems with Delay. Stability and Control</i>, Springer, Singapore, 2022. es_ES
dc.description.references X. Li, X. Yang and J. Cao, Event-triggered impulsive control for nonlinear delay systems, <i>Automatica J. IFAC</i>, <b>117</b> (2020), 108981, 7 pp. es_ES
dc.description.references X. Liang, Y. Pei, M. Zhu, Y. Lv.Multiple kinds of optimal impulse control strategies on plant–pest–predator model with eco-epidemiology, <i>Appl. Math. Comput.</i>, <b>287/288</b> (2016), 1-11. es_ES
dc.description.references M. Loève, <i>Probability Theory I</i>, Springer, New York, 1977. es_ES
dc.description.references G. J. Lord, C. E. Powell and T. Shardlow, <i>An Introduction to Computational Stochastic PDEs</i>, vol. 50, Cambridge University Press, 2014. es_ES
dc.description.references X. Mao, <i>Stochastic Differential Equations and Applications</i>, Horwood Publishing Limited, Chichester,, 2008. es_ES
dc.description.references T. Neckel and F. Rupp, <i>Random Differential Equations in Scientific Computing</i>, Versita, London, 2013. es_ES
dc.description.references B. Øksendal, <i>Stochastic Differential Equations: An Introduction with Applications</i>, 6th edition, Springer, New York, 2010. es_ES
dc.description.references L. Shaikhet, <i>Lyapunov Functional and Stability of Stochastic Differential Equations</i>, Springer, 2013. es_ES
dc.description.references T. T. Soong, <i>Random Differential Equations in Science and Engineering</i>, Mathematics in Science and Engineering, Academic Press, Inc., New York, 1973. es_ES
dc.description.references A. Vinodkumar, M. Gowrisankar, P. Mohankumar.Existence, uniqueness and stability of random impulsive neutral partial differential equations, <i>J. Egyptian Math. Soc.</i>, <b>23</b> (2015), 31-36. es_ES
dc.description.references S. Wu, Y. Duan.Oscillation stability and boundedness of second-order differential systems with random impulses, <i>Comput. Math. Appl.</i>, <b>49</b> (2005), 1375-1386. es_ES
dc.description.references S. Wu, X. Meng.Boundedness of nonlinear differential systems with impulsive effect on random moments, <i>Acta Math. Appl. Sin. Engl. Ser.</i>, <b>20</b> (2004), 147-154. es_ES
dc.description.references S. Zhang and J. Sun, Stability analysis of second-order differential systems with Erlang distribution random impulses, <i>Adv. Difference Equ.</i>, <b>2013</b> (2013), 4, 10 pp. es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem