- -

Fluctuation relations for irreversible emergence of information

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Fluctuation relations for irreversible emergence of information

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Arias-Gonzalez, J. R. es_ES
dc.date.accessioned 2023-03-27T18:01:33Z
dc.date.available 2023-03-27T18:01:33Z
dc.date.issued 2022-10-14 es_ES
dc.identifier.issn 2045-2322 es_ES
dc.identifier.uri http://hdl.handle.net/10251/192623
dc.description.abstract [EN] Information theory and Thermodynamics have developed closer in the last years, with a growing application palette in which the formal equivalence between the Shannon and Gibbs entropies is exploited. The main barrier to connect both disciplines is the fact that information does not imply a dynamics, whereas thermodynamic systems unfold with time, often away from equilibrium. Here, we analyze chain-like systems comprising linear sequences of physical objects carrying symbolic meaning. We show that, after defining a reading direction, both reversible and irreversible informations emerge naturally from the principle of microscopic reversibility in the evolution of the chains driven by a protocol. We find fluctuation equalities that relate entropy, the relevant concept in communication, and energy, the thermodynamically significant quantity, examined along sequences whose content evolves under writing and revision protocols. Our results are applicable to nanoscale chains, where information transfer is subject to thermal noise, and extendable to virtually any communication system. es_ES
dc.description.sponsorship This work was supported by Ministerio de Ciencia e Innovacion, Grant Number PID2019-107391RB-I00. es_ES
dc.language Inglés es_ES
dc.publisher Nature Publishing Group es_ES
dc.relation.ispartof Scientific Reports es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject.classification FISICA APLICADA es_ES
dc.title Fluctuation relations for irreversible emergence of information es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1038/s41598-022-21729-9 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-107391RB-I00/ES/APLICACIONES BIOFOTONICAS DE LENTES DIFRACTIVAS ESCTRUCTURADAS/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería del Diseño - Escola Tècnica Superior d'Enginyeria del Disseny es_ES
dc.description.bibliographicCitation Arias-Gonzalez, JR. (2022). Fluctuation relations for irreversible emergence of information. Scientific Reports. 12(1):1-7. https://doi.org/10.1038/s41598-022-21729-9 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1038/s41598-022-21729-9 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 7 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 12 es_ES
dc.description.issue 1 es_ES
dc.identifier.pmid 36241690 es_ES
dc.identifier.pmcid PMC9568592 es_ES
dc.relation.pasarela S\474649 es_ES
dc.contributor.funder AGENCIA ESTATAL DE INVESTIGACION es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.description.references Weitenberg, C. et al. Single-spin addressing in an atomic Mott insulator. Nature 471, 319–324 (2011). es_ES
dc.description.references Lewis-Swan, R. J., Safavi-Naini, A., Kaufman, A. M. & Rey, A. M. Dynamics of quantum information. Nat. Rev. Phys. 1, 627–634 (2019). es_ES
dc.description.references Browaeys, A. & Lahaye, T. Many-body physics with individually controlled Rydberg atoms. Nat. Phys. 16, 132–142 (2020). es_ES
dc.description.references Hartke, T., Oreg, B., Jia, N. & Zwierlein, M. Quantum register of fermion pairs. Nature 601, 537–541 (2022). es_ES
dc.description.references Landauer, R. Information is physical. Phys. Today 44, 23–29 (1991). es_ES
dc.description.references Barato, A. C. & Seifert, U. Stochastic thermodynamics with information reservoirs. Phys. Rev. E 90, 042150 (2014). es_ES
dc.description.references Parrondo, J. M. R., Horowitz, J. M. & Sagawa, T. Thermodynamics of information. Nat. Phys. 11, 131–139 (2015). es_ES
dc.description.references Gavrilov, M., Chétrite, R. & Bechhoefer, J. Direct measurement of weakly nonequilibrium system entropy is consistent with Gibbs–Shannon form. Proc. Natl. Acad. Sci. USA 114, 11097–11102 (2017). es_ES
dc.description.references Bérut, A. et al. Experimental verification of Landauer’s principle linking information and thermodynamics. Nature 483, 187–189 (2012). es_ES
dc.description.references Hong, J., Lambson, B., Dhuey, S. & Bokor, J. Experimental test of Landauer’s principle in single-bit operations on nanomagnetic memory bits. Sci. Adv. 2, 1501492–1501497 (2016). es_ES
dc.description.references Gaudenzi, R., Burzurí, E., Maegawa, S., van der Zant, H. S. J. & Luis, F. Quantum Landauer erasure with a molecular nanomagnet. Nat. Phys. 14, 565–568 (2018). es_ES
dc.description.references Toyabe, S., Sagawa, T., Ueda, M., Muneyuki, E. & Sano, M. Experimental demonstration of information-to-energy conversion and validation of the generalized Jarzynski equality. Nat. Phys. 6, 988–992 (2010). es_ES
dc.description.references Masuyama, Y. et al. Information-to-work conversion by Maxwell’s demon in a superconducting circuit quantum electrodynamical system. Nat. Commun. 9, 1291 (2018). es_ES
dc.description.references Ribezzi-Crivellari, M. & Ritort, F. Large work extraction and the Landauer limit in a continuous Maxwell demon. Nat. Phys. 15, 660–664 (2019). es_ES
dc.description.references Li, G.-W. & Xie, X. S. Central dogma at the single-molecule level in living cells. Nature 475, 308–315 (2011). es_ES
dc.description.references Bustamante, C., Cheng, C. & Mejia, Y. X. Revisiting the central dogma one molecule at a time. Cell 144, 480–497 (2011). es_ES
dc.description.references Bowsher, C. G. & Swain, P. S. Environmental sensing, information transfer, and cellular decision-making. Curr. Opin. Biotechnol. 28, 149–155 (2014). es_ES
dc.description.references Andrieux, D. & Gaspard, P. Nonequilibrium generation of information in copolymerization processes. Proc. Natl. Acad. Sci. USA 105, 9516 (2008). es_ES
dc.description.references McGrath, T., Jones, N. S., ten Wolde, P. R. & Ouldridge, T. E. Biochemical machines for the interconversion of mutual information and work. Phys. Rev. Lett. 118, 028101 (2017). es_ES
dc.description.references Song, Y.-S., Shu, Y.-G., Zhou, X., Ou-Yang, Z.-C. & Li, M. Proofreading of DNA polymerase: A new kinetic model with higher-order terminal effects. J. Phys. Condens. Matter 29, 025101 (2017). es_ES
dc.description.references Lynn, C. W., Cornblath, E. J., Papadopoulos, L., Bertolero, M. A. & Bassett, D. S. Broken detailed balance and entropy production in the human brain. Proc. Natl. Acad. Sci. USA 118, e2109889118 (2021). es_ES
dc.description.references Bennett, C. H. Logical reversibility of computation. IBM J. Res. Dev. 17, 525–532 (1973). es_ES
dc.description.references Landauer, R. Irreversibility and heat generation in the computing process. Adv. Chem. Phys. 5, 183–191 (1961). es_ES
dc.description.references Bustamante, C., Liphardt, J. & Ritort, F. The nonequilibrium thermodynamics of small systems. Phys. Today 58, 43 (2005). es_ES
dc.description.references Ritort, F. Nonequilibrium fluctuations in small systems: From physics to biology. Adv. Chem. Phys. 137, 31–123 (2008). es_ES
dc.description.references Liphardt, J., Dumont, S., Smith, S. B., Tinoco, I. & Bustamante, C. Equilibrium information from nonequilibrium measurements in an experimental test of Jarzynski’s equality. Science 296, 1832 (2002). es_ES
dc.description.references Collin, D. et al. Verification of the Crooks fluctuation theorem and recovery of RNA folding free energies. Nature 437, 231 (2005). es_ES
dc.description.references Douarche, F., Ciliberto, S., Petrosyan, A. & Rabbiosi, I. An experimental test of the Jarzynski equality in a mechanical experiment. Europhys. Lett. 70, 593 (2005). es_ES
dc.description.references Bustamante, C. In singulo biochemistry: When less is more. Annu. Rev. Biochem. 77, 45 (2008). es_ES
dc.description.references Sagawa, T. & Ueda, M. Generalized Jarzynski equality under nonequilibrium feedback control. Phys. Rev. Lett. 104, 090602 (2010). es_ES
dc.description.references Horowitz, J. M. & Sandberg, H. Second-law-like inequalities with information and their interpretations. New J. Phys. 16, 125007 (2014). es_ES
dc.description.references Sartori, P. & Pigolotti, S. Thermodynamics of error correction. Phys. Rev. X 5, 041039 (2015). es_ES
dc.description.references Arias-Gonzalez, J. R. Writing, proofreading and editing in information theory. Entropy 20, 368 (2018). es_ES
dc.description.references Arias-Gonzalez, J. R. Information management in DNA replication modeled by directional, stochastic chains with memory. J. Chem. Phys. 145, 185103 (2016). es_ES
dc.description.references Arias-Gonzalez, J. R. Thermodynamic framework for information in nanoscale systems with memory. J. Chem. Phys. 147, 205101 (2017). es_ES
dc.description.references Arias-Gonzalez, J. R. Entropy involved in fidelity of DNA replication. PLoS ONE 7, e42272 (2012). es_ES
dc.description.references Landau, L. D. & Lifshitz, E. M. Statistical Physics (Third Edition), Part 1 (Vol. 5), Section II, Chapters 13 and 15 (Pergamon Press, 1980). es_ES
dc.description.references Crooks, G. E. On thermodynamic and microscopic reversibility. J. Stat. Mech. 1, 7008 (2011). es_ES
dc.description.references Jarzynski, C. Nonequilibrium equality for free energy differences. Phys. Rev. Lett. 78, 2690 (1997). es_ES
dc.description.references Gallavotti, G. & Cohen, E. G. D. Dynamical ensembles in nonequilibrium statistical mechanics. Phys. Rev. Lett. 74, 2694 (1995). es_ES
dc.description.references Jarzynski, C. & Wójcik, D. K. Classical and quantum fluctuation theorems for heat exchange. Phys. Rev. Lett. 92, 230602 (2004). es_ES
dc.description.references Crooks, G. E. Entropy production fluctuation theorem and the nonequilibrium work relation for free energy differences. J. Stat. Mech. 60, 2721 (1999). es_ES
dc.description.references Sagawa, T. & Ueda, M. Fluctuation theorem with information exchange: Role of correlations in stochastic thermodynamics. Phys. Rev. Lett. 109, 180602 (2012). es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem