- -

Sistema domótico controlado a través de una interfaz cerebro-ordenador

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Sistema domótico controlado a través de una interfaz cerebro-ordenador

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Velasco-Álvarez, Francisco es_ES
dc.contributor.author Fernández-Rodríguez, Álvaro es_ES
dc.contributor.author Ron-Angevin, Ricardo es_ES
dc.date.accessioned 2023-04-18T12:47:57Z
dc.date.available 2023-04-18T12:47:57Z
dc.date.issued 2023-03-31
dc.identifier.issn 1697-7912
dc.identifier.uri http://hdl.handle.net/10251/192804
dc.description.abstract [EN] Brain-computer interface (BCI) technology permits brain activity to be used as a communication channel without the usage of muscular action in order to control a computer or different devices, such as a home automation system. Nevertheless, BCI systems have proven to be difficult to adapt to handle external equipment. The objective of this work is to control a home automation system through a BCI that allows the construction of voice commands, which are interpreted by a virtual assistant. The suggested system has been tested by twelve participants. WhatsApp, Spotify, Google Nest, a smart light bulb, a smart plug (to switch on/off a radio), and an infrared controller (to control a TV and an air conditioner) were among the devices operated. The results obtained have shown that the proposed BCI was effective for the control of a flexible home automation system that can be adapted to the needs of the users. es_ES
dc.description.abstract [ES] Las interfaces cerebro-ordenador (BCI, de brain-computer interface) permiten utilizar la actividad cerebral de un usuario como canal de comunicación para interactuar con determinados dispositivos. Sin embargo, adaptar los dispositivos del entorno para que sean controlados a través de una BCI no es una tarea sencilla. El objetivo del presente trabajo es controlar un sistema domótico a través de una BCI que permita la construcción de comandos de voz, los cuales serán interpretados por un asistente virtual. Doce usuarios han probado el sistema propuesto para el control de las siguientes aplicaciones y dispositivos: WhatsApp, Spotify, Google Nest, una bombilla inteligente, un enchufe inteligente (para encender y apagar una radio) y un mando de infrarrojos (para controlar una televisión y un aire acondicionado). Los resultados obtenidos han demostrado que la BCI propuesta ha resultado efectiva para el control de sistema domótico flexible y que puede ser adaptado a las necesidades de los usuarios. es_ES
dc.description.sponsorship Este trabajo es parte del proyecto SICODIS (PID2021-127261OB-I00), que ha sido financiado conjuntamente por el Ministerio de Ciencia, Innovación y Universidades (MCIU), la Agencia Estatal de Investigación (AEI), el Fondo Europeo de Desarrollo Regional (FEDER) y la Universidad de Málaga (UMA). es_ES
dc.language Español es_ES
dc.publisher Universitat Politècnica de València es_ES
dc.relation.ispartof Revista Iberoamericana de Automática e Informática industrial es_ES
dc.rights Reconocimiento - No comercial - Compartir igual (by-nc-sa) es_ES
dc.subject Brain-computer interface es_ES
dc.subject Home automation es_ES
dc.subject Voice es_ES
dc.subject Event-related potential es_ES
dc.subject Interfaz cerebro-ordenador es_ES
dc.subject Domótica es_ES
dc.subject Voz es_ES
dc.subject Potencial relacionado con eventos es_ES
dc.title Sistema domótico controlado a través de una interfaz cerebro-ordenador es_ES
dc.title.alternative Home automation system controlled through a brain-computer interface es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.4995/riai.2023.18718
dc.relation.projectID info:eu-repo/grantAgreement/AEI//PID2021-127261OB-I00 es_ES
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Velasco-Álvarez, F.; Fernández-Rodríguez, Á.; Ron-Angevin, R. (2023). Sistema domótico controlado a través de una interfaz cerebro-ordenador. Revista Iberoamericana de Automática e Informática industrial. 20(2):224-235. https://doi.org/10.4995/riai.2023.18718 es_ES
dc.description.accrualMethod OJS es_ES
dc.relation.publisherversion https://doi.org/10.4995/riai.2023.18718 es_ES
dc.description.upvformatpinicio 224 es_ES
dc.description.upvformatpfin 235 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 20 es_ES
dc.description.issue 2 es_ES
dc.identifier.eissn 1697-7920
dc.relation.pasarela OJS\18718 es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Universidad de Málaga es_ES
dc.description.references Allison, B. Z., Kübler, A., & Jin, J. (2020). 30+ years of P300 brain-computer interfaces. Psychophysiology, 57(7), 1-18. https://doi.org/10.1111/psyp.13569 es_ES
dc.description.references Aydın, E. A., Bay, Ö. F., & Güler, İ. (2016). Implementation of an Embedded Web Server Application for Wireless Control of Brain Computer Interface Based Home Environments. Journal of Medical Systems, 40(1), 1-10. https://doi.org/10.1007/s10916-015-0386-0 es_ES
dc.description.references Bangor, A., Kortum, P. T., & Miller, J. T. (2008). An empirical evaluation of the system usability scale. International Journal of Human-Computer Interaction. https://doi.org/10.1080/10447310802205776 es_ES
dc.description.references Brooke, J. (1996). SUS - A quick and dirty usability scale. Usability Evaluation in Industry, 189(194), 4-7. https://doi.org/10.1002/hbm.20701 es_ES
dc.description.references Chai, X., Zhang, Z., Guan, K., Lu, Y., Liu, G., Zhang, T., & Niu, H. (2020). A hybrid BCI-controlled smart home system combining SSVEP and EMG for individuals with paralysis. Biomedical Signal Processing and Control, 56, 101687. https://doi.org/10.1016/j.bspc.2019.101687 es_ES
dc.description.references Corralejo, R., Nicolás-Alonso, L. F., Álvarez, D., & Hornero, R. (2014). A P300-based brain-computer interface aimed at operating electronic devices at home for severely disabled people. Medical and Biological Engineering and Computing, 52(10), 861-872. https://doi.org/10.1007/s11517-014-1191-5 es_ES
dc.description.references Fernández-Rodríguez, Á., Medina-Juliá, M. T., Velasco-Álvarez, F., & Ron-Angevin, R. (2021). Different effects of using pictures as stimuli in a P300 brain-computer interface under rapid serial visual presentation or row-column paradigm. Medical and Biological Engineering and Computing, 59(4), 869-881. https://doi.org/10.1007/s11517-021-02340-y es_ES
dc.description.references Furdea, A., Halder, S., Krusienski, D. J., Bross, D., Nijboer, F., Birbaumer, N., & Kübler, A. (2009). An auditory oddball (P300) spelling system for brain-computer interfaces. Psychophysiology, 46(3), 617-625. https://doi.org/10.1111/j.1469-8986.2008.00783.x es_ES
dc.description.references Hart, S. G. (2006). Nasa-Task Load Index (NASA-TLX); 20 Years Later. Proceedings of the Human Factors and Ergonomics Society Annual Meeting, 50(9), 904-908. https://doi.org/10.1177/154193120605000909 es_ES
dc.description.references Hart, S. G., & Staveland, L. E. (1988). Development of NASA-TLX (Task Load Index): Results of Empirical and Theoretical Research. In Advances in Psychology (Vol. 52, Issue C, pp. 139-183). https://doi.org/10.1016/S0166-4115(08)62386-9 es_ES
dc.description.references Hsieh, K. L., Sun, K. T., Yeh, J. K., & Pan, Y. U. (2017). Home care by auditory Brain Computer Interface for the blind with severe physical disabilities. Proceedings of the 2017 IEEE International Conference on Applied System Innovation: Applied System Innovation for Modern Technology, ICASI 2017, 527-530. https://doi.org/10.1109/ICASI.2017.7988473 es_ES
dc.description.references Jin, J., Chen, Z., Xu, R., Miao, Y., Wang, X., & Jung, T. P. (2020). Developing a Novel Tactile P300 Brain-Computer Interface with a Cheeks-Stim Paradigm. IEEE Transactions on Biomedical Engineering, 67(9), 2585-2593. https://doi.org/10.1109/TBME.2020.2965178 es_ES
dc.description.references Jin, J., Li, S., Daly, I., Miao, Y., Liu, C., Wang, X., & Cichocki, A. (2020). The Study of Generic Model Set for Reducing Calibration Time in P300-Based Brain-Computer Interface. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 28(1), 3-12. https://doi.org/10.1109/TNSRE.2019.2956488 es_ES
dc.description.references Kosmyna, N., Tarpin-Bernard, F., Bonnefond, N., & Rivet, B. (2016). Feasibility of BCI control in a realistic smart home environment. Frontiers in Human Neuroscience, 10(August), 10. https://doi.org/10.3389/fnhum.2016.00416 es_ES
dc.description.references Kubler, A., Neumann, N., Kaiser, J., Kotchoubey, B., Hinterberger, T., & Birbaumer, N. P. (2001). Brain-computer communication: Self-regulation of slow cortical potentials for verbal communication. Archives of Physical Medicine and Rehabilitation, 82(11), 1533-1539. https://doi.org/10.1053/apmr.2001.26621 es_ES
dc.description.references Labib, F. E. Z. M., Fouad, I. A., Mabrouk, M. S., & Sharawy, A. A. (2020). MULTIPLE CLASSIFICATION TECHNIQUES TOWARD A ROBUST and RELIABLE P300 BCI SYSTEM. Biomedical Engineering - Applications, Basis and Communications, 32(2), 1-12. https://doi.org/10.4015/S1016237220500106 es_ES
dc.description.references Li, G. L., Wu, J. T., Xia, Y. H., He, Q. G., & Jin, H. G. (2020). Review of semi-dry electrodes for EEG recording. Journal of Neural Engineering, 17(5). https://doi.org/10.1088/1741-2552/abbd50 es_ES
dc.description.references Liu, Y., Liu, Y., Tang, J., Yin, E., Hu, D., & Zhou, Z. (2020). A self-paced BCI prototype system based on the incorporation of an intelligent environment-understanding approach for rehabilitation hospital environmental control. Computers in Biology and Medicine, 118(January), 103618. https://doi.org/10.1016/j.compbiomed.2020.103618 es_ES
dc.description.references Lotte, F., Bougrain, L., Cichocki, A., Clerc, M., Congedo, M., Rakotomamonjy, A., & Yger, F. (2018). A review of classification algorithms for EEG-based brain-computer interfaces: A 10 year update. Journal of Neural Engineering, 15(3). https://doi.org/10.1088/1741-2552/aab2f2 es_ES
dc.description.references Lu, Z., Li, Q., Gao, N., Yang, J., & Bai, O. (2019). Happy emotion cognition of bimodal audiovisual stimuli optimizes the performance of the P300 speller. Brain and Behavior, September, 1-13. https://doi.org/10.1002/brb3.1479 es_ES
dc.description.references Medina-Juliá, M. T., Fernández-Rodríguez, Á., Velasco-Álvarez, F., & Ron-Angevin, R. (2020). P300-Based Brain-Computer Interface Speller: Usability Evaluation of Three Speller Sizes by Severely Motor-Disabled Patients. Frontiers in Human Neuroscience, 14(October), 1-10. https://doi.org/10.3389/fnhum.2020.583358 es_ES
dc.description.references Nicolas-Alonso, L. F., & Gomez-Gil, J. (2012). Brain computer interfaces, a review. Sensors, 12(2), 1211-1279. https://doi.org/10.3390/s120201211 es_ES
dc.description.references Park, S., Cha, H. S., & Im, C. H. (2019). Development of an Online Home Appliance Control System Using Augmented Reality and an SSVEP-Based Brain-Computer Interface. IEEE Access, 7, 163604-163614. https://doi.org/10.1109/ACCESS.2019.2952613 es_ES
dc.description.references Ryan, D. B., Colwell, K. A., Throckmorton, C. S., Collins, L. M., Caves, K., & Sellers, E. W. (2018). Evaluating Brain-Computer Interface Performance in an ALS Population: Checkerboard and Color Paradigms. Clinical EEG and Neuroscience, 49(2), 114-121. https://doi.org/10.1177/1550059417737443 es_ES
dc.description.references Saha, S., Mamun, K. A., Ahmed, K., Mostafa, R., Naik, G. R., Darvishi, S., Khandoker, A. H., & Baumert, M. (2021). Progress in Brain Computer Interface: Challenges and Opportunities. Frontiers in Systems Neuroscience, 15(February), 1-20. https://doi.org/10.3389/fnsys.2021.578875 es_ES
dc.description.references Schalk, G., McFarland, D. J., Hinterberger, T., Birbaumer, N., & Wolpaw, J. R.(2004). BCI2000: A general-purpose brain-computer interface (BCI) system. In IEEE Transactions on Biomedical Engineering (Vol. 51, Issue 6, pp. 1034-1043). https://doi.org/10.1109/TBME.2004.827072 es_ES
dc.description.references Shivappa, V. K. K., Luu, B., Solis, M., & George, K. (2018). Home automation system using brain computer interface paradigm based on auditory selection attention. I2MTC 2018 - 2018 IEEE International Instrumentation and Measurement Technology Conference: Discovering New Horizons in Instrumentation and Measurement, Proceedings, 1-6. https://doi.org/10.1109/I2MTC.2018.8409863 es_ES
dc.description.references Sun, K. T., Hsieh, K. L., & Syu, S. R. (2020). Towards an accessible use of a brain-computer interfaces-based home care system through a smartphone. Computational Intelligence and Neuroscience, 2020, 16-18. https://doi.org/10.1155/2020/1843269 es_ES
dc.description.references Townsend, G., LaPallo, B. K., Boulay, C. B., Krusienski, D. J., Frye, G. E., Hauser, C. K., Schwartz, N. E., Vaughan, T. M., Wolpaw, J. R., & Sellers, E. W. (2010). A novel P300-based brain-computer interface stimulus presentation paradigm: Moving beyond rows and columns. Clinical Neurophysiology, 121(7), 1109-1120. https://doi.org/10.1016/j.clinph.2010.01.030 es_ES
dc.description.references Utsumi, K., Takano, K., Okahara, Y., Komori, T., Onodera, O., & Kansaku, K. (2018). Operation of a P300-based braincomputer interface in patientswith Duchenne muscular dystrophy. Scientific Reports, 8(1), 4-11. https://doi.org/10.1038/s41598-018-20125-6 es_ES
dc.description.references Velasco-Álvarez, F., Fernández-Rodríguez, Á., Vizcaíno-Martín, F.-J., Díaz-Estrella, A., & Ron-Angevin, R. (2021). Brain-Computer Interface (BCI) Control of a Virtual Assistant in a Smartphone to Manage Messaging Applications. Sensors, 21(11). https://doi.org/10.3390/s21113716 es_ES
dc.description.references Velasco-Álvarez, F., Sancha-Ros, S., García-Garaluz, E., Fernández-Rodríguez, Á., Medina-Juliá, M. T. T., & Ron-Angevin, R. (2019). UMA-BCI Speller: an Easily Configurable P300 Speller Tool for End Users. Computer Methods and Programs in Biomedicine, 172, 127-138. https://doi.org/10.1016/j.cmpb.2019.02.015 es_ES
dc.description.references Wolpaw, J. R., Ramoser, H., McFarland, D. J., & Pfurtscheller, G. (1998). EEG-based communication: Improved accuracy by response verification. IEEE Transactions on Rehabilitation Engineering, 6(3), 326-333. https://doi.org/10.1109/86.712231 es_ES
dc.description.references Wolpaw, Jonathan R., Birbaumer, N., McFarland, D. J., Pfurtscheller, G., & Vaughan, T. M. (2002). Brain-computer interfaces for communication and control. Clinical Neurophysiology, 113(6), 767-791. https://doi.org/10.1016/S1388-2457(02)00057-3 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem