- -

Coupled-core fiber Bragg gratings for low-cost sensing

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Coupled-core fiber Bragg gratings for low-cost sensing

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Flores-Bravo, Jose A. es_ES
dc.contributor.author Madrigal-Madrigal, Javier es_ES
dc.contributor.author Zubia, Joseba es_ES
dc.contributor.author Sales Maicas, Salvador es_ES
dc.contributor.author Villatoro, Joel es_ES
dc.date.accessioned 2023-05-12T18:02:10Z
dc.date.available 2023-05-12T18:02:10Z
dc.date.issued 2022-01-24 es_ES
dc.identifier.issn 2045-2322 es_ES
dc.identifier.uri http://hdl.handle.net/10251/193331
dc.description.abstract [EN] Sensors based on Bragg gratings inscribed in conventional single mode fibers are expensive due to the need of a sophisticated, but low-speed, interrogation system. As an alternative to overcome this issue, in this work, it is proposed and demonstrated the use of coupled-core optical fiber Bragg gratings. It was found that the relative reflectivity from such gratings changed when the coupled-core fiber was subjected to point or periodic bending. This feature makes the interrogation of such gratings simple, fast, and cost-effective. The reflectivity changes of the gratings are attributed to the properties of the supermodes supported by the coupled-core fiber. As potential applications of the referred gratings, intensity-modulated vector bending and vibration sensing are demonstrated. We believe that the results reported here can pave the way to the development of many inexpensive sensors. Besides, coupled-core fiber Bragg gratings may expand the use of grating technology in other areas. es_ES
dc.description.sponsorship This work is part of the Projects No. PGC2018-101997-B-I00 and RTI2018-094669-B-C31 funded by the MCIN/AEI/10.13039/501100011033/and FEDER, Una manera de hacer Europa; and the scholarship PAID-01-18 Granted by the Universitat Politecnica de Valencia. es_ES
dc.language Inglés es_ES
dc.publisher Nature Publishing Group es_ES
dc.relation.ispartof Scientific Reports es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject.classification TEORÍA DE LA SEÑAL Y COMUNICACIONES es_ES
dc.title Coupled-core fiber Bragg gratings for low-cost sensing es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1038/s41598-022-05313-9 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AGENCIA ESTATAL DE INVESTIGACION//PID2020-118310RB-I00//SPECIALTY FIBERS EXPLOITING SPATIAL MULTIPLEXING FOR SIGNAL PROCESSING, SENSING AND BEYOND/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-101997-B-I00/ES/SENSORES AVANZADOS CON FIBRA MULTINUCLEO/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UPV//PAID-01-18//Programa de Ayudas de Investigación y Desarrollo (PAID-01-18)/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-094669-B-C31/ES/TECNOLOGIAS DISRUPTIVAS DE FIBRA OPTICA DE PLASTICO/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Telecomunicación y Aplicaciones Multimedia - Institut Universitari de Telecomunicacions i Aplicacions Multimèdia es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros de Telecomunicación - Escola Tècnica Superior d'Enginyers de Telecomunicació es_ES
dc.description.bibliographicCitation Flores-Bravo, JA.; Madrigal-Madrigal, J.; Zubia, J.; Sales Maicas, S.; Villatoro, J. (2022). Coupled-core fiber Bragg gratings for low-cost sensing. Scientific Reports. 12(1):1-9. https://doi.org/10.1038/s41598-022-05313-9 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1038/s41598-022-05313-9 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 9 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 12 es_ES
dc.description.issue 1 es_ES
dc.identifier.pmid 35075222 es_ES
dc.identifier.pmcid PMC8786905 es_ES
dc.relation.pasarela S\455201 es_ES
dc.contributor.funder AGENCIA ESTATAL DE INVESTIGACION es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.description.references Riza, M. A., Go, Y. I., Harun, S. W. & Maier, R. R. FBG sensors for environmental and biochemical applications—A review. IEEE Sens. J. 20, 7614–7627 (2020). es_ES
dc.description.references Li, T., Guo, J., Tan, Y. & Zhou, Z. Recent advances and tendency in fiber Bragg grating-based vibration sensor: A review. IEEE Sens. J. 20, 12074–12087 (2020). es_ES
dc.description.references Sahota, J., Gupta, N. & Dhawan, D. Fiber Bragg grating sensors for monitoring of physical parameters: A comprehensive review. Opt. Eng. 59, 060901 (2020). es_ES
dc.description.references Massaroni, C. et al. Fiber Bragg grating sensors for cardiorespiratory monitoring: A review. IEEE Sens. J. 21, 14069–14080. https://doi.org/10.1109/JSEN.2020.2988692 (2021). es_ES
dc.description.references Götten, M. et al. A CDM-WDM interrogation scheme for massive serial FBG sensor networks. IEEE Sens. J. https://doi.org/10.1109/JSEN.2021.3070446 (2021). es_ES
dc.description.references Cusano, A., Cutolo, A. & Albert, J. Fiber Bragg Grating Sensors: Recent Advancements, Industrial Applications and Market Exploitation (Bentham Science Publishers, 2011). es_ES
dc.description.references Mendoza, E. A. (Patent US 7512291B2, 2009). es_ES
dc.description.references Yang, F. et al. Miniature interrogator for multiplexed FBG strain sensors based on a thermally tunable microring resonator array. Opt. Express 27, 6037–6046 (2019). es_ES
dc.description.references Darwich, D., Youssef, A. & Zaraket, H. Low-cost multiple FBG interrogation technique for static applications. Opt. Lett. 45, 1116–1119 (2020). es_ES
dc.description.references Silveira, P. C. et al. 2018 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), 1–6 (IEEE). es_ES
dc.description.references Darwich, D., Youssef, A., Pisco, M. & Zaraket, H. Investigation of low-cost interrogation technique based on modulated distributed feedback laser. IEEE Sens. J. 20, 2460–2466 (2019). es_ES
dc.description.references Tosi, D. Review and analysis of peak tracking techniques for fiber Bragg grating sensors. Sensors 17, 2368 (2017). es_ES
dc.description.references Kouroussis, G. et al. Edge-filter technique and dominant frequency analysis for high-speed railway monitoring with fiber Bragg gratings. Smart Mater. Struct. 25, 075029 (2016). es_ES
dc.description.references Fernández, M. P., Rossini, L. A. B., Cruz, J. L., Andrés, M. V. & Caso, P. A. C. High-speed and high-resolution interrogation of FBG sensors using wavelength-to-time mapping and Gaussian filters. Opt. Express 27, 36815–36823 (2019). es_ES
dc.description.references Ogawa, K. et al. Wireless, portable fiber Bragg grating interrogation system employing optical edge filter. Sensors 19, 3222 (2019). es_ES
dc.description.references Kim, C.-S. et al. Multi-point interrogation of FBG sensors using cascaded flexible wavelength-division Sagnac loop filters. Opt. Express 14, 8546–8551 (2006). es_ES
dc.description.references Cheng, L.-K., Hagen, R., van Megen, D., Molkenboer, F. & Jansen, R. Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems (International Society for Optics and Photonics, 2019). es_ES
dc.description.references Dong, X., Shao, L.-Y., Fu, H., Tam, H. Y. & Lu, C. Intensity-modulated fiber Bragg grating sensor system based on radio-frequency signal measurement. Opt. Lett. 33, 482–484 (2008). es_ES
dc.description.references Gatti, D., Galzerano, G., Janner, D., Longhi, S. & Laporta, P. Fiber strain sensor based on a π-phase-shifted Bragg grating and the Pound-Drever-Hall technique. Opt. Express 16, 1945–1950. https://doi.org/10.1364/OE.16.001945 (2008). es_ES
dc.description.references Rosenthal, A., Razansky, D. & Ntziachristos, V. High-sensitivity compact ultrasonic detector based on a pi-phase-shifted fiber Bragg grating. Opt. Lett. 36, 1833–1835 (2011). es_ES
dc.description.references Wu, Q. & Okabe, Y. High-sensitivity ultrasonic phase-shifted fiber Bragg grating balanced sensing system. Opt. Express 20, 28353–28362. https://doi.org/10.1364/OE.20.028353 (2012). es_ES
dc.description.references Huang, J. et al. Optical sensors reflection-based phase-shifted long period fiber grating for simultaneous measurement of temperature and refractive index. Opt. Eng. https://doi.org/10.1117/1.OE.52.1.014404 (2013). es_ES
dc.description.references Guo, J., Xue, S., Zhao, Q. & Yang, C. Ultrasonic imaging of seismic physical models using a phase-shifted fiber Bragg grating. Opt. Express 22, 19573–19580. https://doi.org/10.1364/OE.22.019573 (2014). es_ES
dc.description.references Deepa, S. & Das, B. Interrogation techniques for π-phase-shifted fiber Bragg grating sensor: A review. Sens. Actuators A 315, 112215. https://doi.org/10.1016/j.sna.2020.112215 (2020). es_ES
dc.description.references Wang, Q. & Liu, Y. Review of optical fiber bending/curvature sensor. Measurement 130, 161–176 (2018). es_ES
dc.description.references Bao, W., Rong, Q., Chen, F. & Qiao, X. All-fiber 3D vector displacement (bending) sensor based on an eccentric FBG. Opt. Express 26, 8619–8627 (2018). es_ES
dc.description.references Yakushin, S. S. et al. A study of bending effect on the femtosecond-pulse inscribed fiber Bragg gratings in a dual-core fiber. Opt. Fiber Technol. 43, 101–105 (2018). es_ES
dc.description.references Jang, M., Kim, J. S., Um, S. H., Yang, S. & Kim, J. Ultra-high curvature sensors for multi-bend structures using fiber Bragg gratings. Opt. Express 27, 2074–2084. https://doi.org/10.1364/OE.27.002074 (2019). es_ES
dc.description.references Liu, Z. et al. Strongly coupled multicore fiber with FBGs for multipoint and multiparameter sensing. Opt. Fiber Technol. 58, 102315. https://doi.org/10.1016/j.yofte.2020.102315 (2020). es_ES
dc.description.references Murakami, Y. & Sudo, S. Coupling characteristics measurements between curved waveguides using a two-core fiber coupler. Appl. Opt. 20, 417–422 (1981). es_ES
dc.description.references Rugeland, P. & Margulis, W. Revisiting twin-core fiber sensors for high-temperature measurements. Appl. Opt. 51, 6227–6232 (2012). es_ES
dc.description.references Yin, G., Zhang, F., Xu, B., He, J. & Wang, Y. Intensity-modulated bend sensor by using a twin core fiber: Theoretical and experimental studies. Opt. Express 28, 14850–14858 (2020). es_ES
dc.description.references Flockhart, G. et al. Two-axis bend measurement with Bragg gratings in multicore optical fiber. Opt. Lett. 28, 387–389 (2003). es_ES
dc.description.references Zhang, H. et al. Fiber Bragg gratings in heterogeneous multicore fiber for directional bending sensing. J. Opt. 18, 085705 (2016). es_ES
dc.description.references Bao, W., Wang, C., Wang, Y., Sahoo, N. & Zhang, L. 2D bending (curvature) recognition based on a combination of a TFBG and an orthogonal TFBG pair. Appl. Phys. Express 12, 072009 (2019). es_ES
dc.description.references Rong, Q., Qiao, X., Yang, H., Lim, K. S. & Ahmad, H. Fiber Bragg grating inscription in a thin-core fiber for displacement measurement. IEEE Photonics Technol. Lett. 27, 1108–1111 (2015). es_ES
dc.description.references Chen, F., Qiao, X., Wang, R., Su, D. & Rong, Q. Orientation-dependent fiber-optic displacement sensor using a fiber Bragg grating inscribed in a side-hole fiber. Appl. Opt. 57, 3581–3585 (2018). es_ES
dc.description.references Blanchard, P. M. et al. Two-dimensional bend sensing with a single, multi-core optical fibre. Smart Mater. Struct. 9, 132 (2000). es_ES
dc.description.references Guzman-Sepulveda, J. & May-Arrioja, D. In-fiber directional coupler for high-sensitivity curvature measurement. Opt. Express 21, 11853–11861 (2013). es_ES
dc.description.references Van Newkirk, A. et al. Bending sensor combining multicore fiber with a mode-selective photonic lantern. Opt. Lett. 40, 5188–5191 (2015). es_ES
dc.description.references Villatoro, J. et al. Ultrasensitive vector bending sensor based on multicore optical fiber. Opt. Lett. 41, 832–835 (2016). es_ES
dc.description.references Wang, S. et al. Bending vector sensor based on the multimode-2-core-multimode fiber structure. IEEE Photonics Technol. Lett. 28, 2066–2069. https://doi.org/10.1109/LPT.2016.2582758 (2016). es_ES
dc.description.references Liu, Z. et al. Temperature-insensitive curvature sensor based on Bragg gratings written in strongly coupled multicore fiber. Opt. Lett. 46, 3933–3936. https://doi.org/10.1364/OL.432889 (2021). es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem