- -

A fast method to evaluate in a combinatorial manner the synergistic effect of different biostimulants for promoting growth or tolerance against abiotic stress

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A fast method to evaluate in a combinatorial manner the synergistic effect of different biostimulants for promoting growth or tolerance against abiotic stress

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Benito, Patricia es_ES
dc.contributor.author Ligorio, Daniele es_ES
dc.contributor.author Bellón, Javier es_ES
dc.contributor.author Yenush, Lynne es_ES
dc.contributor.author Mulet, José Miguel es_ES
dc.date.accessioned 2023-05-15T18:01:58Z
dc.date.available 2023-05-15T18:01:58Z
dc.date.issued 2022-09-15 es_ES
dc.identifier.issn 1746-4811 es_ES
dc.identifier.uri http://hdl.handle.net/10251/193386
dc.description.abstract [EN] Background: According to the most popular defnition, a biostimulant is any substance or microorganism applied to plants with the aim to enhance nutrition efciency, abiotic stress tolerance and/or crop quality traits, regardless of its nutrient content. Therefore, a biostimulant can help crops to withstand abiotic stress, while maintaining or even increasing productivity. We have previously designed a sequential system, based on two diferent model organisms, the baker¿s yeast Saccharomyces cerevisiae and the plant Arabidopsis thaliana, to evaluate the potential of diferent natural extracts as biostimulants employing a blind-test strategy. Results: In this report, we further expand this concept to evaluate diferent biostimulants in a combinatorial approach to reveal the potential additive, synergistic or antagonistic efects of diferent combinations of biostimulants in order to design new formulations with enhanced efects on plant growth or tolerance to abiotic stress. The method is based on yeast assays (growth tests in solid medium, and continuous growth in liquid cultures) and plant assays (mass accumulation in hydroponic culture) to assess efects on early growth. Conclusions: With this novel approach, we have designed new formulations and quantifed the ability to enhance growth and promote biomass accumulation under normal conditions and in the presence of abiotic stresses, such as drought, salinity or cold. This method enables a fast screen of many diferent products in a combinatorial manner, in order to design novel formulations of natural extracts with biostimulant potential. es_ES
dc.description.sponsorship This investigation was funded by the CDTI program project EXP 00137666/IDI-20210456. awarded to CALDIC Iberica S.L. and the research contract. "DESARROLLO DE FORMULADOS BIOESTIMULANTES Y BIOFERTILIZANTES INNOVADORES DE ORIGEN NATURAL (CALBIO) DESTINADOS A LA AGRICULTURA CONVENCIONAL Y ECOLOGICA. ESTUDIO CIENTIFICO DE EFECTOS SINERGICOS ENTRE BIOACTIVOS MICROBIANOS Y NO MICROBIANOS" Between CALDIC Iberica S.L. and Universitat Politecnica de Valencia. es_ES
dc.language Inglés es_ES
dc.publisher Springer (Biomed Central Ltd.) es_ES
dc.relation.ispartof Plant Methods es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Biostimulant es_ES
dc.subject Synergies es_ES
dc.subject Saccharomyces cerevisiae es_ES
dc.subject Arabidopsis thaliana es_ES
dc.subject Abiotic stress es_ES
dc.subject Growth promoters es_ES
dc.subject Model system es_ES
dc.subject Salinity es_ES
dc.subject Drought es_ES
dc.subject.classification BIOQUIMICA Y BIOLOGIA MOLECULAR es_ES
dc.title A fast method to evaluate in a combinatorial manner the synergistic effect of different biostimulants for promoting growth or tolerance against abiotic stress es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1186/s13007-022-00943-6 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/CDTI//EXP 00137666%2FIDI-20210456/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería Agronómica y del Medio Natural - Escola Tècnica Superior d'Enginyeria Agronòmica i del Medi Natural es_ES
dc.description.bibliographicCitation Benito, P.; Ligorio, D.; Bellón, J.; Yenush, L.; Mulet, JM. (2022). A fast method to evaluate in a combinatorial manner the synergistic effect of different biostimulants for promoting growth or tolerance against abiotic stress. Plant Methods. 18(1):1-17. https://doi.org/10.1186/s13007-022-00943-6 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1186/s13007-022-00943-6 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 17 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 18 es_ES
dc.description.issue 1 es_ES
dc.identifier.pmid 36109758 es_ES
dc.identifier.pmcid PMC9479394 es_ES
dc.relation.pasarela S\471620 es_ES
dc.contributor.funder CALDIC IBERICA, S.L. es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.contributor.funder Centro para el Desarrollo Tecnológico Industrial es_ES
dc.description.references FAO. High level experts forum-how to feed the world in 2050. Rome; 2012. es_ES
dc.description.references Pingali PL. Green revolution: impacts, limits, and the path ahead. Proc Natl Acad Sci USA. 2012;31:12302–8. es_ES
dc.description.references Pingali PL, Rosegrant MW. Confronting the environmental consequences of the green revolution in Asia. 1994. es_ES
dc.description.references Burney JA, Davis SJ, Lobell DB. Greenhouse gas mitigation by agricultural intensification. Proc Natl Acad Sci. 2022;107:12052–7. es_ES
dc.description.references Castillo VM. La Estrategia Temática para la Protección del Suelo: un instrumento para el uso sostenible de los suelos en Europa. ISBN 1697-2473. 2004. es_ES
dc.description.references FAO. The future of food and agriculture. Rome; 2008. es_ES
dc.description.references Jamil A, Riaz S, Ashraf M, Foolad MR. Gene expression profiling of plants under salt stress. Crit Rev Plant Sci. 2011;30:435–58. es_ES
dc.description.references Hasegawa PM, Bressan RA, Zhu J-K, Bohnert HJ. Plant cellular and molecular responses to high salinity. Ann Rev Plant Physiol Plant Mol Biol. 2000;51:463–99. https://doi.org/10.1146/annurev.arplant.51.1.463. es_ES
dc.description.references Zhu J-K, Bressan R, Pardo JM. Salt and crops: salinity tolerance stomatal development view project adventitious root initiation of micropropagted rose. View project. 2005. Available from: https://www.researchgate.net/publication/253157682 es_ES
dc.description.references Hu Y, Schmidhalter U. Drought and salinity: a comparison of their effects on mineral nutrition of plants. J Plant Nutr Soil Sci. 2005;168:541–9. https://doi.org/10.1002/jpln.200420516. es_ES
dc.description.references Tuteja N. Mechanisms of high salinity tolerance in plants. In: Häussinger D, Sies H, editors. Methods in enzymology. London: Academic Press; 2007. p. 419–38. es_ES
dc.description.references Parida AK, Das AB. Salt tolerance and salinity effects on plants: a review. Ecotoxicol Environ Saf. 2005;60:324–49. es_ES
dc.description.references du Jardin P. Plant biostimulants: definition, concept, main categories and regulation. Sci Horticult. 2015;196:3–14. es_ES
dc.description.references Yakhin OI, Lubyanov AA, Yakhin IA, Brown PH. Biostimulants in plant science: a global perspective. Front Plant Sci. 2017;7:2049. https://doi.org/10.3389/fpls.2016.02049. es_ES
dc.description.references Rouphael Y, Colla G. Editorial: biostimulants in agriculture. Front Plant Sci. 2020;11:40. https://doi.org/10.3389/fpls.2020.00040. es_ES
dc.description.references Drobek M, Frąc M, Cybulska J. Plant biostimulants: importance of the quality and yield of horticultural crops and the improvement of plant tolerance to abiotic stress—a review. Agronomy. 2019;9:335. es_ES
dc.description.references Colla G, Cardarelli M, Bonini P, Rouphael Y. Foliar applications of protein hydrolysate, plant and seaweed extracts increase yield but differentially modulate fruit quality of greenhouse tomato. HortScience. 2017;52:1214–20. es_ES
dc.description.references Giordano M, El-Nakhel C, Caruso G, Cozzolino E, de Pascale S, Kyriacou MC, et al. Stand-alone and combinatorial effects of plant-based biostimulants on the production and leaf quality of perennial wall rocket. Plants MDPI AG. 2020;9:1–15. es_ES
dc.description.references Saporta R, Bou C, Frías V, Mulet JM. A method for a fast evaluation of the biostimulant potential of different natural extracts for promoting growth or tolerance against abiotic stress. Agronomy. 2019;9:143. es_ES
dc.description.references Ríos G, Cabedo M, Rull B, Yenush L, Serrano R, Mulet JM. Role of the yeast multidrug transporter Qdr2 in cation homeostasis and the oxidative stress response. FEMS Yeast Res. 2013;13:97–106. es_ES
dc.description.references Baker Brachmann C, Davies A, Cost GJ, Caputo E, Li J, Hieter P, et al. Designer deletion strains derived from Saccharomyces cerevisiae S288C: a useful set of strains and plasmids for PCR-mediated gene disruption and other applications. Yeast. 1998;14:115–32. es_ES
dc.description.references van Heerden JH, Kempe H, Doerr A, Maarleveld T, Nordholt N, Bruggeman FJ. Statistics and simulation of growth of single bacterial cells: illustrations with B. subtilis and E. coli. Sci Rep. 2017;7:1–11. es_ES
dc.description.references Bissoli G, Niñoles R, Fresquet S, Palombieri S, Bueso E, Rubio L, et al. Peptidyl-prolyl cis-trans isomerase ROF2 modulates intracellular pH homeostasis in Arabidopsis. Plant J. 2012;70:704–16. es_ES
dc.description.references Locascio A, Andrés-Colás N, Mulet JM, Yenush L. Saccharomyces cerevisiae as a tool to investigate plant potassium and sodium transporters. Int J Mol Sci. 2019;20(9):2133. es_ES
dc.description.references Montesinos C, Gaxiola R, Ríos G, Forment J, Leube M, Mulet JM, et al. Functional genomics of salt tolerance: the yeast overexpression approach. In: International symposium on managing greenhouse crops in saline environment 2003; p. 31–8. es_ES
dc.description.references Mulet JM, Alemany B, Ros R, Calvete JJ, Serrano R. Expression of a plant serine O-acetyltransferase in Saccharomyces cerevisiae confers osmotic tolerance and creates an alternative pathway for cysteine biosynthesis. Yeast. 2004;21:303–12. https://doi.org/10.1002/yea.1076. es_ES
dc.description.references Gisbert C, Timoneda A, Porcel R, Ros R, Mulet JM. Overexpression of bvhb2, a class 2 non-symbiotic hemoglobin from sugar beet, confers drought-induced withering resistance and alters iron content in tomato. Agronomy. 2020;10:1754. es_ES
dc.description.references Chapagain BP, Wiesman Z. Tsror (Lahkim) L. In vitro study of the antifungal activity of saponin-rich extracts against prevalent phytopathogenic fungi. Ind Crops Prod. 2007;26:109–15. es_ES
dc.description.references Shukla PS, Mantin EG, Adil M, Bajpai S, Critchley AT, Prithiviraj B. Ascophyllum nodosum-based biostimulants: sustainable applications in agriculture for the stimulation of plant growth, stress tolerance, and disease management. Front Plant Sci. 2019;10:655. es_ES
dc.description.references Desoky ESM, ElSayed AI, Merwad ARMA, Rady MM. Stimulating antioxidant defenses, antioxidant gene expression, and salt tolerance in Pisum sativum seedling by pretreatment using licorice root extract (LRE) as an organic biostimulant. Plant Physiol Biochem. 2019;142:292–302. es_ES
dc.description.references Rady MM, Desoky ESM, Elrys AS, Boghdady MS. Can licorice root extract be used as an effective natural biostimulant for salt-stressed common bean plants? S Afr J Bot. 2019;121:294–305. es_ES
dc.description.references El-Abagy H, El-Greadly N. Studies on the effect of putrescine, yeast and vitamin C on growth, yield and physiological responses of eggplant (Solanum melongena L.) under sandy soil conditions. Austral J Basic Appl Sci. 2008;2:296–300. es_ES
dc.description.references Campobenedetto C, Agliassa C, Mannino G, Vigliante I, Contartese V, Secchi F, et al. A biostimulant based on seaweed (Ascophyllum nodosum and Laminaria digitata) and yeast extracts mitigateswater stress effects on tomato (Solanum lycopersicum L.). Agriculture. 2021;11:557. es_ES
dc.description.references Mannino G, Campobenedetto C, Vigliante I, Contartese V, Gentile C, Bertea CM. The application of a plant biostimulant based on seaweed and yeast extract improved tomato fruit development and quality. Biomolecules. 2020;10:1–19. es_ES
dc.description.references Chiaiese P, Corrado G, Colla G, Kyriacou MC, Rouphael Y. Renewable sources of plant biostimulation: microalgae as a sustainable means to improve crop performance. Front Plant Sci. 2018. https://doi.org/10.3389/fpls.2018.01782. es_ES
dc.description.references Serrano R, Mulet JM, Rios G, Marquez JA, de Larrinoa IF, Leube MP, et al. A glimpse of the mechanisms of ion homeostasis during salt stress. J Exp Bot. 1999;50:1023–36. es_ES
dc.description.references Saa S, Olivos-Del Rio A, Castro S, Brown PH. Foliar application of microbial and plant based biostimulants increases growth and potassium uptake in almond (Prunus dulcis [Mill] D. A. Webb). Front Plant Sci. 2015. https://doi.org/10.3389/fpls.2015.00087. es_ES
dc.description.references Goñi O, Quille P, O’Connell S. Ascophyllum nodosum extract biostimulants and their role in enhancing tolerance to drought stress in tomato plants. Plant Physiol Biochem. 2018;126:63–73. es_ES
dc.subject.ods 02.- Poner fin al hambre, conseguir la seguridad alimentaria y una mejor nutrición, y promover la agricultura sostenible es_ES
dc.subject.ods 03.- Garantizar una vida saludable y promover el bienestar para todos y todas en todas las edades es_ES
dc.subject.ods 06.- Garantizar la disponibilidad y la gestión sostenible del agua y el saneamiento para todos es_ES
dc.subject.ods 08.- Fomentar el crecimiento económico sostenido, inclusivo y sostenible, el empleo pleno y productivo, y el trabajo decente para todos es_ES
dc.subject.ods 10.- Reducir las desigualdades entre países y dentro de ellos es_ES
dc.subject.ods 12.- Garantizar las pautas de consumo y de producción sostenibles es_ES
dc.subject.ods 13.- Tomar medidas urgentes para combatir el cambio climático y sus efectos es_ES
dc.subject.ods 15.- Proteger, restaurar y promover la utilización sostenible de los ecosistemas terrestres, gestionar de manera sostenible los bosques, combatir la desertificación y detener y revertir la degradación de la tierra, y frenar la pérdida de diversidad biológica es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem