- -

Fractional Beer-Lambert law in laser heating of biological tissue

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Fractional Beer-Lambert law in laser heating of biological tissue

Mostrar el registro completo del ítem

Lizama, C.; Murillo Arcila, M.; Trujillo Guillen, M. (2022). Fractional Beer-Lambert law in laser heating of biological tissue. AIMS Mathematics. 14(4):14444-14459. https://doi.org/10.3934/math.2022796

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/194426

Ficheros en el ítem

Metadatos del ítem

Título: Fractional Beer-Lambert law in laser heating of biological tissue
Autor: Lizama, Carlos Murillo Arcila, Marina Trujillo Guillen, Macarena
Entidad UPV: Universitat Politècnica de València. Escuela Técnica Superior de Arquitectura - Escola Tècnica Superior d'Arquitectura
Fecha difusión:
Resumen:
[EN] In this article we propose an alternative formulation to model a thermal-optical coupled problem involving laser heating. We show that by using the Fractional Beer-Lambert Law (FBLL) instead of the Beer-Lambert Law ...[+]
Palabras clave: Partial differential equations , Fractional Beer-Lambert law , Laplace transform , Thermal therapies , Heat equation , Corneal laser irradiation
Derechos de uso: Reconocimiento (by)
Fuente:
AIMS Mathematics. (eissn: 2473-6988 )
DOI: 10.3934/math.2022796
Editorial:
American Institute of Mathematical Sciences
Versión del editor: https://doi.org/10.3934/math.2022796
Código del Proyecto:
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-105011GB-I00/ES/DINAMICA DE OPERADORES/
info:eu-repo/grantAgreement/GENERALITAT VALENCIANA//PROMETEO%2F2021%2F070//Análisis funcional, dinámica de operadores y aplicaciones/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-094357-B-C21/ES/MODELADO Y EXPERIMENTACION PARA TERAPIAS ABLATIVAS INNOVADORAS/
info:eu-repo/grantAgreement/FONDECYT//1220036/
info:eu-repo/grantAgreement/AEI//PID2019-105011GB-I00//DINAMICA DE OPERADORES/
Agradecimientos:
C. Lizama is partially supported by ANID Project FONDECYT 1220036. M. MurilloArcila is supported by MCIN/AEI/10.13039/501100011033, Project PID2019-105011GBI00, and by Generalitat Valenciana, Project PROMETEU/2021/070. M. ...[+]
Tipo: Artículo

References

I. Abdelhalim, O. Hamdy, A. A. Hassan, S. H. Elnaby, Dependence of the heating effect on tissue absorption coefficient during corneal reshaping using different UV lasers: A numerical study, <i>Phys. Eng. Sci. Med.</i> <b>44</b> (2021), 221–227. <a href="https://doi.org/10.1007/s13246-021-00971-x" target="_blank">https://doi.org/10.1007/s13246-021-00971-x</a>

A. E, Abouelregal, K. M. Khalil, W. W. Mohammed, D. Atta, Thermal vibration in rotating nanobeams with temperature–dependent due to exposure to laser irradiation, <i>AIMS Math.</i>, <b>7</b> (2022), 6128–6152. https://doi.org/10.3934/math.2022341

A. E. Abouelregal, A. Soleiman, H. M. Sedighi, K. M. Khalil, M. E. Nasr, Advanced thermoelastic heat conduction model with two fractional parameters and phase-lags, <i>Phys. Scr.</i>, <b>96</b> (2021), 124048. https://doi.org/10.1088/1402-4896/ac2f80 [+]
I. Abdelhalim, O. Hamdy, A. A. Hassan, S. H. Elnaby, Dependence of the heating effect on tissue absorption coefficient during corneal reshaping using different UV lasers: A numerical study, <i>Phys. Eng. Sci. Med.</i> <b>44</b> (2021), 221–227. <a href="https://doi.org/10.1007/s13246-021-00971-x" target="_blank">https://doi.org/10.1007/s13246-021-00971-x</a>

A. E, Abouelregal, K. M. Khalil, W. W. Mohammed, D. Atta, Thermal vibration in rotating nanobeams with temperature–dependent due to exposure to laser irradiation, <i>AIMS Math.</i>, <b>7</b> (2022), 6128–6152. https://doi.org/10.3934/math.2022341

A. E. Abouelregal, A. Soleiman, H. M. Sedighi, K. M. Khalil, M. E. Nasr, Advanced thermoelastic heat conduction model with two fractional parameters and phase-lags, <i>Phys. Scr.</i>, <b>96</b> (2021), 124048. https://doi.org/10.1088/1402-4896/ac2f80

G. Casasanta, D. Ciani, R. Garra, Non-exponential extinction of radiation by fractional calculus modelling, <i>J. Quant. Spectrosc. Radiat. Transf.</i>, <b>113</b> (2012), 194–197. https://doi.org/10.1016/j.jqsrt.2011.10.003

D. Fuente, C. Lizama, J. F. Urchueguía, J. A. Conejero, Estimation of the light field inside photosynthetic microorganism cultures through Mittag-Leffler functions at depleted light conditions, <i>J. Quant. Spectrosc. Radiat. Transf.</i>, <b>204</b> (2018), 23–26. https://doi.org/10.1016/j.jqsrt.2017.08.012

M. Ghanbari, G. Rezazadeh, Thermo-vibrational analyses of skin tissue subjected to laser heating source in thermal therapy, <i>Sci. Rep.</i>, <b>11</b> (2021), 22633. https://doi.org/10.1038/s41598-021-02006-7

A. L. Gough-Palmer, W. M. Gedroyc, Laser ablation of hepatocellular carcinoma–a review, <i>World J. Gastroenterol.</i>, <b>14</b> (2008), 7170–7174. https://doi.org/10.3748/wjg.14.7170

P. Grigolini, A. Rocco, B. J. West, Fractional calculus as a macroscopic manifestation of randmoness, <i>Phys. Rev. E.</i>, <b>59</b> (1999), 3. https://doi.org/10.1103/PhysRevE.59.2603

C. Y. Hsiao, S. C. Yang, A. Alalaiwe, J. Y. Fang, Laser ablation and topical drug delivery: A review of recent advances, <i>Expert. Opin. Drug. Deliv.</i>, <b>16</b> (2019), 937–952. https://doi.org/10.1080/17425247.2019.1649655

R. Ibrahim, C. Ozel, On Multi-Order fractional differential operators in the unit disk, <i>Filomat</i>, <b>30</b> (2016), 73–81. https://doi.org/10.2298/FIL1601073I

H. E. John, P. J. Mahaffey, Laser ablation and cryotherapy of melanoma metastases, <i>J. Surg. Oncol.</i>, <b>109</b> (2014), 296–300. https://doi.org/10.1002/jso.23488

A. Kabiri, M. R. Talaee, Thermal field and tissue damage analysis of moving laser in cancer thermal therapy, <i>Lasers Med. Sci.</i>, <b>36</b> (2021), 583–597. https://doi.org/10.1007/s10103-020-03070-7

D. Kim, H. Kim, Induction of apoptotic temperature in photothermal therapy under various heating conditions in multi-layered skin structure, <i>Int. J. Mol. Sci.</i>, <b>22</b> (2021), 11091. https://doi.org/10.3390/ijms222011091

A. N. Kochubei, Y. F. Luchko, Handbook of fractional calculus with applications, <b>1</b> (2019), 2019.

A. Liemert, A. Kienle, Radiative transport equation for the Mittag-Leffler path length distribution, <i>J. Math. Phys.</i>, <b>58</b> (1017), 053511. https://doi.org/10.1063/1.4983682

A. Liemert, A. Kienle, Fractional radiative transport in the diffusion approximation, <i>J. Math. Chem.</i>, 2017. <a href="https://doi.org/10.1007/s10910-017-0792-2" target="_blank">https://doi.org/10.1007/s10910-017-0792-2</a>

R. R. Letfullin, S. A. Szatkowski, Laser-induced thermal ablation of cancerous cell organelles, <i>Ther. Deliv.</i>, <b>8</b> (2017), 501–509. https://doi.org/10.4155/tde-2016-0087

C. Lizama, M. Trujillo, The time fractional approach for the modeling of thermal therapies: Temperature analysis in laser irradiation, <i>Int. J. Heat Mass. Transfer.</i>, <b>154</b> (2020), 119677. https://doi.org/10.1016/j.ijheatmasstransfer.2020.119677

E. Luther, S. Mansour, N. Echeverry, D. McCarthy, D. G. Eichberg, A. Shah, et al., Laser ablation for cerebral metastases, <i>Neurosurg. Clin. N. Am.</i>, <b>31</b> (2020), 537–547. https://doi.org/10.1016/j.nec.2020.06.004

F. Manns, D. Borja, J. M. A. Parel, W. E. Smiddy, W. Culbertson, Semianalytical thermal model for subablative laser heating of homogeneous nonperfused biological tissue: Application to laser thermokeratoplasty, <i>J. Biomed. Optics.</i>, 2003

<b>8</b> (2003), 288-297. <a href="https://doi.org/10.1117/1.1560644" target="_blank">https://doi.org/10.1117/1.1560644</a>

A. Narasimhan, K. K. Jha, Bio-heat transfer simulation of retinal laser irradiation, <i>Int. J. Numer. Method Biomed. Eng.</i>, <i>28</i> (2012), 547–559. <a href="https://doi.org/10.1002/cnm.1489" target="_blank">https://doi.org/10.1002/cnm.1489</a>

P. Ooshiar, A. Moradi, B. Khezry, Bioheat transfer analysis of biological tissues induced by laser irradiation, <i>Int. J. Thermal. Sci.</i>, <b>90</b> (2015). <a href="https://doi.org/10.1016/j.ijthermalsci.2014.12.004" target="_blank">https://doi.org/10.1016/j.ijthermalsci.2014.12.004</a>

I. Oshina, J. Spigulis, Beer–Lambert law for optical tissue diagnostics: Current state of the art and the main limitations, <i>J. Biomed. Optics.</i>, <b>26</b> (2021), 100901. https://doi.org/10.1117/1.JBO.26.10.100901

A. D. Poularikas, The Handbook of Formulas and Tables for Signal Processing, CRC Press LLC, 1999.

E. V. Ross, F. P. Sajben, J. Hsia, D. Barnette, C. H. Miller, J. R. McKinlay, Nonablative skin remodeling: Selective dermal heating with a mid-infrared laser and contact cooling combination, <i>Lasers Surg. Med.</i>, <b>26</b> (2000), 186–195. https://doi.org/10.1002/(SICI)1096-9101(2000)26:2&lt;186::AID-LSM9&gt;3.0.CO;2-I

F. Rossi, R. Pini, L. Menabuoni, Experimental and model analysis on the temperature dynamics during diode laser welding of the cornea, <i>J. Biomed. Opt.</i>, <b>12</b> (2007), 014031. https://doi.org/10.1117/1.2437156

M. Şen, A. E. Çalık, H. Ertik, Determination of half-value thickness of aluminum foils for different beta sources by using fractional calculus, <i>Nucl. Instrum. Methods Phys. Res.</i>, <b>335</b> (2014), 78–84. https://doi.org/10.1016/j.nimb.2014.06.005

V. Tramontana, G. Casasanta, R. Garra, A. M. Iannarelli, An application of Wright functions to the photon propagation, <i>J. Quant. Spectrosc. Radiat. Transf.</i>, <b>124</b> (2013), 45–48. https://doi.org/10.1016/j.jqsrt.2013.03.008

M. Trujillo, M. J. Rivera, J. A. Molina López, E. Berjano, Analytical thermal–optic model for laser heating of biological tissue using the hyperbolic heat transfer equation, <i>Math. Med. Biol.</i>, <b>26</b> (2009), 187–200. https://doi.org/10.1093/imammb/dqp002

M. E. Vuylsteke, S. R. Mordon, Endovenous laser ablation: A review of mechanisms of action, <i>Ann. Vasc. Surg.</i>, <b>26</b> (2012), 424–433. https://doi.org/10.1016/j.avsg.2011.05.037

J. N. Webb, H. Zhang, A. Sinha Roy, J. B. Randleman, G. Scarcelli, Detecting Mechanical Anisotropy of the Cornea Using Brillouin Microscopy, <i>Transl. Vis. Sci. Technol.</i>, <b>9</b> (2020), 26. https://doi.org/10.1167/tvst.9.7.26

K. Zhang, Y. Zhang, J. Li, Q. Wang, A contrastive analysis of laser heating between the human and guinea pig cochlea by numerical simulations, <i>Biomed Eng Online.</i>, <b>15</b> (2016), 59. https://doi.org/10.1186/s12938-016-0190-1

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem