- -

Impact of GST thickness on GST-loaded silicon waveguides for optimal optical switching

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Impact of GST thickness on GST-loaded silicon waveguides for optimal optical switching

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Parra Gómez, Jorge es_ES
dc.contributor.author Navarro-Arenas, Juan es_ES
dc.contributor.author Kovylina-Zabyako, Miroslavna es_ES
dc.contributor.author Sanchis Kilders, Pablo es_ES
dc.date.accessioned 2023-06-23T18:01:58Z
dc.date.available 2023-06-23T18:01:58Z
dc.date.issued 2022-06-13 es_ES
dc.identifier.issn 2045-2322 es_ES
dc.identifier.uri http://hdl.handle.net/10251/194510
dc.description.abstract [EN] Phase-change integrated photonics has emerged as a new platform for developing photonic integrated circuits by integrating phase-change materials like GeSbTe (GST) onto the silicon photonics platform. The thickness of the GST patch that is usually placed on top of the waveguide is crucial for ensuring high optical performance. In this work, we investigate the impact of the GST thickness in terms of optical performance through numerical simulation and experiment. We show that higher-order modes can be excited in a GST-loaded silicon waveguide with relatively thin GST thicknesses (<100 nm), resulting in a dramatic reduction in the extinction ratio. Our results would be useful for designing high-performance GST/Si-based photonic devices such as non-volatile memories that could find utility in many emerging applications. es_ES
dc.description.sponsorship This work is supported by grants PID2019-111460GB-I00, ICTS-2017-28-UPV-9F, and FPU17/04224 funded by MCIN/AEI/ 10.13039/501100011033, by "ERDF A way of making Europe" and "ESF Investing in your future". Funding from Generalitat Valenciana (PROMETEO/2019/123). Funding for open access charge: Universitat Politecnica de Valencia. The authors would like to thank Helen Urgelles for her help with the experimental measurements. es_ES
dc.language Inglés es_ES
dc.publisher Nature Publishing Group es_ES
dc.relation.ispartof Scientific Reports es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject GST es_ES
dc.subject Phase-change materials es_ES
dc.subject Optical switching es_ES
dc.subject Silicon photonics es_ES
dc.subject.classification TEORÍA DE LA SEÑAL Y COMUNICACIONES es_ES
dc.title Impact of GST thickness on GST-loaded silicon waveguides for optimal optical switching es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1038/s41598-022-13848-0 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-111460GB-I00/ES/HACIA DISPOSITIVOS FOTONICOS NO VOLATILES/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/ //FPU17%2F04224//AYUDA CONTRATO PREDOCTORAL FPU-PARRA GOMEZ. PROYECTO: DISPOSITIVOS OPTOELECTRONICOS BASADOS EN LA INTEGRACION DE MATERIALES CON PRESTACIONES UNICAS EN LA TECNOLOGIA DE FOTONICA DE SILICIO/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GENERALITAT VALENCIANA//PROMETEO%2F2019%2F123//NANOFOTONICA AVANZADA SOBRE SILICIO (AVANTI)/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Tecnología Nanofotónica - Institut Universitari de Tecnologia Nanofotònica es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros de Telecomunicación - Escola Tècnica Superior d'Enginyers de Telecomunicació es_ES
dc.description.bibliographicCitation Parra Gómez, J.; Navarro-Arenas, J.; Kovylina-Zabyako, M.; Sanchis Kilders, P. (2022). Impact of GST thickness on GST-loaded silicon waveguides for optimal optical switching. Scientific Reports. 12(1):1-9. https://doi.org/10.1038/s41598-022-13848-0 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1038/s41598-022-13848-0 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 9 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 12 es_ES
dc.description.issue 1 es_ES
dc.identifier.pmid 35697925 es_ES
dc.identifier.pmcid PMC9192748 es_ES
dc.relation.pasarela S\467181 es_ES
dc.contributor.funder GENERALITAT VALENCIANA es_ES
dc.contributor.funder AGENCIA ESTATAL DE INVESTIGACION es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.contributor.funder MINISTERIO DE CIENCIA INNOVACION Y UNIVERSIDADES es_ES
dc.description.references Reed, G. T., Mashanovich, G., Gardes, F. Y. & Thomson, D. J. Silicon optical modulators. Nat. Photonics 4, 518–526. https://doi.org/10.1038/nphoton.2010.179 (2010). es_ES
dc.description.references Wang, J., Sciarrino, F., Laing, A. & Thompson, M. G. Integrated photonic quantum technologies. Nat. Photonics 14, 273–284. https://doi.org/10.1038/s41566-019-0532-1 (2020). es_ES
dc.description.references Heck, M. J. Highly integrated optical phased arrays: photonic integrated circuits for optical beam shaping and beam steering. Nanophotonics 6, 93–107. https://doi.org/10.1515/nanoph-2015-0152 (2017). es_ES
dc.description.references Leuthold, J., Koos, C. & Freude, W. Nonlinear silicon photonics. Nat. Photonics 4, 535–544. https://doi.org/10.1038/nphoton.2010.185 (2010). es_ES
dc.description.references Soref, R. & Bennett, B. Electrooptical effects in silicon. IEEE J. Quantum Electron. 23, 123–129. https://doi.org/10.1109/JQE.1987.1073206 (1987). es_ES
dc.description.references Abel, S. et al. Large Pockels effect in micro- and nanostructured barium titanate integrated on silicon. Nat. Mater. 18, 42–47. https://doi.org/10.1038/s41563-018-0208-0 (2019). es_ES
dc.description.references He, M. et al. High-performance hybrid silicon and lithium niobate Mach–Zehnder modulators for 100 Gbit s-1 and beyond. Nat. Photonics 13, 359–364. https://doi.org/10.1038/s41566-019-0378-6 (2019) (1807.10362.). es_ES
dc.description.references Romagnoli, M. et al. Graphene-based integrated photonics for next-generation datacom and telecom. Nat. Rev. Mater. 3, 392–414. https://doi.org/10.1038/s41578-018-0040-9 (2018). es_ES
dc.description.references You, J. et al. Hybrid/integrated silicon photonics based on 2D materials in optical communication nanosystems. Laser Photonics Rev. 14, 2000239. https://doi.org/10.1002/lpor.202000239 (2020). es_ES
dc.description.references Babicheva, V. E., Boltasseva, A. & Lavrinenko, A. V. Transparent conducting oxides for electro-optical plasmonic modulators. Nanophotonics 4, 165–185. https://doi.org/10.1515/nanoph-2015-0004 (2015). es_ES
dc.description.references Niu, X., Hu, X., Chu, S. & Gong, Q. Epsilon-near-zero photonics: a new platform for integrated devices. Adv. Opt. Mater. 6, 1701292. https://doi.org/10.1002/adom.201701292 (2018). es_ES
dc.description.references Wu, J., Xie, Z. T., Sha, Y., Fu, H. Y. & Li, Q. Epsilon-near-zero photonics: infinite potentials. Photonics Res. 9, 1616. https://doi.org/10.1364/PRJ.427246 (2021). es_ES
dc.description.references Cueff, S. et al. VO2 nanophotonics. APL Photonics 5, 110901. https://doi.org/10.1063/5.0028093 (2020). es_ES
dc.description.references Abdollahramezani, S. et al. Tunable nanophotonics enabled by chalcogenide phase-change materials. Nanophotonics 9, 1189–1241. https://doi.org/10.1515/nanoph-2020-0039 (2020). es_ES
dc.description.references Fang, Z., Chen, R., Zheng, J. & Majumdar, A. Non-volatile reconfigurable silicon photonics based on phase-change materials. IEEE J. Sel. Top. Quantum Electron. 28, 1–17. https://doi.org/10.1109/JSTQE.2021.3120713 (2022). es_ES
dc.description.references Shportko, K. et al. Resonant bonding in crystalline phase-change materials. Nat. Mater. 7, 653–658. https://doi.org/10.1038/nmat2226 (2008). es_ES
dc.description.references Wuttig, M., Bhaskaran, H. & Taubner, T. Phase-change materials for non-volatile photonic applications. Nat. Photonics 11, 465–476. https://doi.org/10.1038/nphoton.2017.126 (2017). es_ES
dc.description.references Zhang, Y. et al. Broadband transparent optical phase change materials for high-performance nonvolatile photonics. Nat. Commun. 10, 4279. https://doi.org/10.1038/s41467-019-12196-4 (2019). es_ES
dc.description.references Redaelli, A., Pirovano, A., Benvenuti, A. & Lacaita, A. L. Threshold switching and phase transition numerical models for phase change memory simulations. J. Appl. Phys. 103, 111101. https://doi.org/10.1063/1.2931951 (2008). es_ES
dc.description.references Rios, C. et al. Controlled switching of phase-change materials by evanescent-field coupling in integrated photonics [Invited]. Opt. Mater. Express 8, 2455. https://doi.org/10.1364/OME.8.002455 (2018). es_ES
dc.description.references Kato, K., Kuwahara, M., Kawashima, H., Tsuruoka, T. & Tsuda, H. Current-driven phase-change optical gate switch using indium-tin-oxide heater. Appl. Phys. Express 10, 072201. https://doi.org/10.7567/APEX.10.072201 (2017). es_ES
dc.description.references Taghinejad, H. et al. ITO-based microheaters for reversible multi-stage switching of phase-change materials: towards miniaturized beyond-binary reconfigurable integrated photonics. Opt. Express 29, 20449. https://doi.org/10.1364/OE.424676 (2021) (2003.04097.). es_ES
dc.description.references Loke, D. et al. Breaking the speed limits of phase-change memory. Science 336, 1566–1569. https://doi.org/10.1126/science.1221561 (2012). es_ES
dc.description.references Xiong, F., Liao, A. D., Estrada, D. & Pop, E. Low-power switching of phase-change materials with carbon nanotube electrodes. Science 332, 568–570. https://doi.org/10.1126/science.1201938 (2011). es_ES
dc.description.references Kim, I. et al. High performance PRAM cell scalable to sub-20nm technology with below 4F2 cell size, extendable to DRAM applications. In 2010 Symposium on VLSI Technology, 203–204, https://doi.org/10.1109/VLSIT.2010.5556228 (IEEE, 2010). es_ES
dc.description.references Tanaka, D. et al. Ultra-small, self-holding, optical gate switch using Ge2Sb2Te5 with a multi-mode Si waveguide. Opt. Express 20, 10283. https://doi.org/10.1364/OE.20.010283 (2012). es_ES
dc.description.references Rudé, M. et al. Optical switching at 1.55 $$\mu$$m in silicon racetrack resonators using phase change materials. Appl. Phys. Lett. 103, 141119. https://doi.org/10.1063/1.4824714 (2013). es_ES
dc.description.references Yu, Z., Zheng, J., Xu, P., Zhang, W. & Wu, Y. Ultracompact electro-optical modulator-based Ge2Sb2Te5 on silicon. IEEE Photonics Technol. Lett. 30, 250–253. https://doi.org/10.1109/LPT.2017.2783928 (2018). es_ES
dc.description.references Shadmani, A., Miri, M. & Mohammadi Pouyan, S. Ultra-wideband multi-level optical modulation in a Ge2Sb2Te5-based waveguide with low power consumption and small footprint.. Opt. Commun. 439, 53–60. https://doi.org/10.1016/j.optcom.2019.01.046 (2019). es_ES
dc.description.references Parra, J., Santome, A., Navarro-Arenas, J. & Sanchis, P. Fast volatile response in GST/Si waveguides for all-optical modulation. In 2021 IEEE 17th International Conference on Group IV Photonics (GFP), 1–2. https://doi.org/10.1109/GFP51802.2021.9673955 (IEEE, 2021). es_ES
dc.description.references Song, Y. & Xu, P. Design of ultra-low insertion loss active transverse electric-pass polarizer based Ge2Sb2Te5 on silicon waveguide. Opt. Commun. 426, 30–34. https://doi.org/10.1016/j.optcom.2018.05.034 (2018). es_ES
dc.description.references Rios, C., Hosseini, P., Wright, C. D., Bhaskaran, H. & Pernice, W. H. P. On-chip photonic memory elements employing phase-change materials. Adv. Mater. 26, 1372–1377. https://doi.org/10.1002/adma.201304476 (2014). es_ES
dc.description.references Ríos, C. et al. Integrated all-photonic non-volatile multi-level memory. Nat. Photonics 9, 725–732. https://doi.org/10.1038/nphoton.2015.182 (2015). es_ES
dc.description.references Zhang, H. et al. Miniature multilevel optical memristive switch using phase change material. ACS Photonics 6, 2205–2212. https://doi.org/10.1021/acsphotonics.9b00819 (2019) (1905.03163.). es_ES
dc.description.references Li, X. et al. Fast and reliable storage using a 5 bit, nonvolatile photonic memory cell. Optica 6, 1. https://doi.org/10.1364/OPTICA.6.000001 (2019). es_ES
dc.description.references Li, X. et al. Experimental investigation of silicon and silicon nitride platforms for phase-change photonic in-memory computing. Optica 7, 218. https://doi.org/10.1364/OPTICA.379228 (2020). es_ES
dc.description.references Feldmann, J. et al. Integrated 256 cell photonic phase-change memory with 512-bit capacity. IEEE J. Sel. Top. Quantum Electron. 26, 1–7. https://doi.org/10.1109/JSTQE.2019.2956871 (2020). es_ES
dc.description.references Stegmaier, M., Rios, C., Bhaskaran, H. & Pernice, W. H. P. Thermo-optical effect in phase-change nanophotonics. ACS Photonics 3, 828–835. https://doi.org/10.1021/acsphotonics.6b00032 (2016). es_ES
dc.description.references von Keitz, J. et al. Reconfigurable nanophotonic cavities with nonvolatile response. ACS Photonics 5, 4644–4649. https://doi.org/10.1021/acsphotonics.8b01127 (2018). es_ES
dc.description.references Zheng, J. et al. GST-on-silicon hybrid nanophotonic integrated circuits: a non-volatile quasi-continuously reprogrammable platform. Opt. Mater. Express 8, 1551. https://doi.org/10.1364/OME.8.001551 (2018). es_ES
dc.description.references Stegmaier, M., Ríos, C., Bhaskaran, H., Wright, C. D. & Pernice, W. H. P. Nonvolatile all-optical 1 2 switch for chipscale photonic networks. Adv. Opt. Mater. 5, 1600346. https://doi.org/10.1002/adom.201600346 (2017). es_ES
dc.description.references Xu, P., Zheng, J., Doylend, J. K. & Majumdar, A. Low-loss and broadband nonvolatile phase-change directional coupler switches. ACS Photonics 6, 553–557. https://doi.org/10.1021/acsphotonics.8b01628 (2019) (1811.08490.). es_ES
dc.description.references Wu, C. et al. Low-loss integrated photonic switch using subwavelength patterned phase change material. ACS Photonics 6, 87–92. https://doi.org/10.1021/acsphotonics.8b01516 (2019). es_ES
dc.description.references Hu, H. et al. Contra-directional switching enabled by Si-GST grating. Opt. Express 28, 1574. https://doi.org/10.1364/OE.381502 (2020). es_ES
dc.description.references Zhang, C. et al. Wavelength-selective 2 x2 optical switch based on a Ge2Sb2Te5-assisted microring. Photonics Res. 8, 1171. https://doi.org/10.1364/PRJ.393513 (2020). es_ES
dc.description.references Zheng, J. et al. Nonvolatile electrically reconfigurable integrated photonic switch enabled by a silicon PIN diode heater. Adv. Mater. 32, 2001218. https://doi.org/10.1002/adma.202001218 (2020). es_ES
dc.description.references Li, Y. et al. Design of an electric-driven nonvolatile low-energy-consumption phase change optical switch. Nanotechnology 32, 405201. https://doi.org/10.1088/1361-6528/ac0ead (2021). es_ES
dc.description.references Cheng, Z., Ríos, C., Pernice, W. H. P., Wright, C. D. & Bhaskaran, H. On-chip photonic synapse. Sci. Adv. 3, https://doi.org/10.1126/sciadv.1700160 (2017). es_ES
dc.description.references Feldmann, J. et al. Calculating with light using a chip-scale all-optical abacus. Nat. Commun. 8, 1256. https://doi.org/10.1038/s41467-017-01506-3 (2017). es_ES
dc.description.references Cheng, Z. et al. Device-level photonic memories and logic applications using phase-change materials. Adv. Mater. 30, 1802435. https://doi.org/10.1002/adma.201802435 (2018). es_ES
dc.description.references Ríos, C. et al. In-memory computing on a photonic platform. Sci. Adv. 5, eaau5759. https://doi.org/10.1126/sciadv.aau5759 (2019). es_ES
dc.description.references Feldmann, J., Youngblood, N., Wright, C. D., Bhaskaran, H. & Pernice, W. H. P. All-optical spiking neurosynaptic networks with self-learning capabilities. Nature 569, 208–214. https://doi.org/10.1038/s41586-019-1157-8 (2019). es_ES
dc.description.references Brückerhoff-Plückelmann, F., Feldmann, J., Wright, C. D., Bhaskaran, H. & Pernice, W. H. P. Chalcogenide phase-change devices for neuromorphic photonic computing. J. Appl. Phys. 129, 151103. https://doi.org/10.1063/5.0042549 (2021). es_ES
dc.description.references Feldmann, J. et al. Parallel convolutional processing using an integrated photonic tensor core. Nature 589, 52–58. https://doi.org/10.1038/s41586-020-03070-1 (2021). es_ES
dc.description.references Parra, J., Olivares, I., Brimont, A. & Sanchis, P. Toward nonvolatile switching in silicon photonic devices. Laser Photonics Rev. 15, 2000501. https://doi.org/10.1002/lpor.202000501 (2021). es_ES
dc.description.references Yariv, A. & Yeh, P. Optical waves in crystals: propagation and control of laser radiation (Wiley, London, 1984). es_ES
dc.description.references Synopsys. FemSIM RSoft. es_ES
dc.description.references Synopsys. FullWAVE RSoft. es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem