- -

Control basado en linealización por realimentación de un convertidor CC-CC con puentes duales activos alimentando una carga de potencia constante

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Control basado en linealización por realimentación de un convertidor CC-CC con puentes duales activos alimentando una carga de potencia constante

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Rodríguez, Federico es_ES
dc.contributor.author Garrido, Daniel Oscar es_ES
dc.contributor.author Núñez, Rubén Orlando es_ES
dc.contributor.author Oggier, Germán Gustavo es_ES
dc.contributor.author García, Guillermo Oscar es_ES
dc.date.accessioned 2023-07-11T07:20:09Z
dc.date.available 2023-07-11T07:20:09Z
dc.date.issued 2023-01-23
dc.identifier.issn 1697-7912
dc.identifier.uri http://hdl.handle.net/10251/194804
dc.description.abstract [ES] Este trabajo presenta una estrategia de control basada en la técnica de linealización por realimentación para regular la tensión a bornes de una carga de potencia constante alimentada por un Convertidor con Puentes Duales Activos (CPDA). Se propone utilizar un cambio de coordenadas no lineal correspondiente a la suma de las energías en los capacitores de puertos del CPDA para evitar que existan dinámicas internas que pueden inestabilizar al sistema. Se presentan resultados de simulación y experimentales que permiten validar la estrategia de control propuesta, a partir de los cuales se puede verificar una buena respuesta dinámica y en régimen permanente del sistema ante variaciones significativas en la potencia transferida. En forma adicional, mediante un análisis en el plano de fase se estudia la estabilidad del control para diferentes condiciones iniciales de las tensiones en los puertos del convertidor. A partir de los resultados de este análisis, se puede corroborar que para una determinada potencia a transferir, existe una tensión inicial mínima sobre la carga por encima de la cual el sistema es estable. es_ES
dc.description.abstract [EN] This paper presents a control strategy based on the feedback linearization technique to regulate the voltage at the terminals of a constant power load fed by a Dual Active Bridge (DAB) Converter. A nonlinear change of coordinates corresponding to the sum of the energies in the capacitors is used to avoid internal dynamics that could destabilize the system. Simulation and experimental results are presented to validate the proposed control strategy, from which a good dynamic and steady state response can be verified under significant variations in the transferred power. Furthermore, the stability of the control for different initial conditions of the voltages in the converter ports is studied using a phase plane analysis. These results confirm that for a given power to be transferred, there is a minimum initial voltage on the load above which the system is stable. es_ES
dc.description.sponsorship El presente trabajo fue soportado por la Secretaría de Ciencia y Técnica de la Universidad Nacional de Río Cuarto (SeCyT, UNRC), el FONCyT de la Agencia Nacional de Promoción Científica y Tecnológica (FONCyT) la Red MEIHAPER CYTEDy la Facultad de Ingeniería de la Universidad Nacional de Misiones (UNaM) es_ES
dc.language Español es_ES
dc.publisher Universitat Politècnica de València es_ES
dc.relation.ispartof Revista Iberoamericana de Automática e Informática industrial es_ES
dc.rights Reconocimiento - No comercial - Compartir igual (by-nc-sa) es_ES
dc.subject Dual active bridge converter es_ES
dc.subject Power electronics es_ES
dc.subject Nonlinear control es_ES
dc.subject Feedback linearization es_ES
dc.subject Constant power load es_ES
dc.subject Convertidor CC-CC con puentes duales activos es_ES
dc.subject Electrónica de potencia es_ES
dc.subject Control no lineal es_ES
dc.subject Linealización por realimentación es_ES
dc.subject Carga de potencia constante es_ES
dc.title Control basado en linealización por realimentación de un convertidor CC-CC con puentes duales activos alimentando una carga de potencia constante es_ES
dc.title.alternative Feedback Linearization Control of a Dual Active Bridge Converter Feeding a Constant Power Load es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.4995/riai.2023.18546
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Rodríguez, F.; Garrido, DO.; Núñez, RO.; Oggier, GG.; García, GO. (2023). Control basado en linealización por realimentación de un convertidor CC-CC con puentes duales activos alimentando una carga de potencia constante. Revista Iberoamericana de Automática e Informática industrial. https://doi.org/10.4995/riai.2023.18546 es_ES
dc.description.accrualMethod OJS es_ES
dc.relation.publisherversion https://doi.org/10.4995/riai.2023.18546 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.identifier.eissn 1697-7920
dc.relation.pasarela OJS\18546 es_ES
dc.description.references Alhurayyis, I., Elkhateb, A., John Morrow, D., 2021. Isolated and Non-Isolated DC-to-DC Converters for Medium Voltage DC Networks: A Review. IEEE Trans. Emerg. Sel. Topics Power Electron. 9 (6), 7486-7500. https://doi.org/10.1109/JESTPE.2020.3028057 es_ES
dc.description.references Arora, S., Balsara, P., Bhatia, D., 2019. Input-output linearization of a boost converter with mixed load (constant voltage load and constant power load). IEEE Trans. Power Electron. 34 (1), 815-825. https://doi.org/10.1109/TPEL.2018.2813324 es_ES
dc.description.references Bacha, S., Munteanu, I., Bratcu, A. I., 2014. Power Electronic Converters Modelling and Control. Springer. https://doi.org/10.1007/978-1-4471-5478-5 es_ES
dc.description.references Bahmani, M. A., Thiringer, T., 2015. Accurate evaluation of leakage inductance in high-frequency transformers using an improved frequency-dependent expression. IEEE Trans. Power Electron. 30 (10), 5738-5745. https://doi.org/10.1109/TPEL.2014.2371057 es_ES
dc.description.references Buso, S., Mattavelli, P., 2015. Digital control in power electronics, 2nd edition. Vol. 5. https://doi.org/10.2200/S00637ED1V01Y201503PEL007 es_ES
dc.description.references Cespedes, M., Xing, L., Sun, J., 2011. Constant-power load system stabilization by passive damping. IEEE Trans. Power Electron. 26 (7), 1832-1836. https://doi.org/10.1109/TPEL.2011.2151880 es_ES
dc.description.references Chen, L., Gao, F., Shen, K., Wang, Z., Tarisciotti, L., Wheeler, P., Dragicevic, T., 2020. Predictive Control Based DC Microgrid Stabilization with the Dual Active Bridge Converter. IEEE Trans. Ind. Electron. 67 (10), 8944-8956. https://doi.org/10.1109/TIE.2020.2965460 es_ES
dc.description.references D. Doncker, R., Divan, D. M., Kheraluwala, M. H., 1991. A three-phase softswitched high-power-density DC/DC converter for high-power applications. IEEE Trans. Ind. Appl. 27 (1), 63-73. https://doi.org/10.1109/28.67533 es_ES
dc.description.references De Din, E., Siddique, H. A. B., Cupelli, M., Monti, A., De Doncker, R. W., 2018. Voltage Control of Parallel-Connected Dual-Active Bridge Converters for Shipboard Applications. IEEE Trans. Emerg. Sel. Topics Power Electron. 6 (2), 664-673. https://doi.org/10.1109/JESTPE.2017.2786350 es_ES
dc.description.references ElMenshawy, M., Massoud, A., 2020. Modular isolated dc-dc converters for ultra-fast ev chargers: A generalized modeling and control approach. Energies 13 (10). https://doi.org/10.3390/en13102540 es_ES
dc.description.references Emadi, A., Khaligh, A., Rivetta, C. H., Williamson, G. A., 2006. Constant power loads and negative impedance instability in automotive systems: Definition, modeling, stability, and control of power electronic converters and motor drives. IEEE Trans. Veh. Technol. 55 (4), 1112-1125. https://doi.org/10.1109/TVT.2006.877483 es_ES
dc.description.references Gammeter, C., Krismer, F., Kolar, J. W., 2016. Comprehensive Conceptualization, Design, and Experimental Verification of a Weight-Optimized All-SiC 2 kV/700 V DAB for an Airborne Wind Turbine. IEEE Trans. Emerg. Sel. Topics Power Electron. 4 (2), 638-656. https://doi.org/10.1109/JESTPE.2015.2459378 es_ES
dc.description.references Gomez Jorge, S., Solsona, J., Busada, C. A., 2022. Nonlinear Control of a Two-Stage Single Phase DC/AC Converter. IEEE Trans. Emerg. Sel. Topics Power Electron., 1-1. https://doi.org/10.1109/JESTIE.2022.3151003 es_ES
dc.description.references Guan, Y., Xie, Y., Wang, Y., Liang, Y., Wang, X., 2021. An Active Damping Strategy for Input Impedance of Bidirectional Dual Active Bridge DC-DC Converter: Modelling, Shaping, Design and Experiment. IEEE Trans. Ind. Electron. 68 (2), 1263-1274. https://doi.org/10.1109/TIE.2020.2969126 es_ES
dc.description.references Hossain, E., Perez, R., Nasiri, A., Padmanaban, S., 2018. A Comprehensive Review on Constant Power Loads Compensation Techniques. IEEE Access 6 (c), 33285-33305. https://doi.org/10.1109/ACCESS.2018.2849065 es_ES
dc.description.references Isidori, A., 1995. Nonlinear Control Systems, 3rd Edition. Springer. https://doi.org/10.1007/978-1-84628-615-5 es_ES
dc.description.references Li, Y., Jia, P., Zheng, T. Q., 2015. Active damping method to reduce the output impedance of the DC - DC converters. IET Power Electron. 8 (1), 88-95. https://doi.org/10.1049/iet-pel.2013.0911 es_ES
dc.description.references Lucas, K. E., Pagano, D. J., Plaza, D. A., Vaca-Benavides, D. A., R'ıos, S. J., 2020. Robust feedback linearization control for DAB converter feeding a CPL. IFAC-PapersOnLine 53 (2), 13402-13409. https://doi.org/10.1016/j.ifacol.2020.12.178 es_ES
dc.description.references Mueller, J. A., Kimball, J. W., 2018. An Improved Generalized Average Model of DC-DC Dual Active Bridge Converters. IEEE Trans. Power Electron. 33 (11), 9975-9988. https://doi.org/10.1109/TPEL.2018.2797966 es_ES
dc.description.references Oggier, G., García, G. O., Oliva, A. R., 2011. Modulation strategy to operate the dual active bridge DC-DC converter under soft switching in the whole operating range. IEEE Trans. Power Electron. 26 (4), 1228-1236. https://doi.org/10.1109/TPEL.2010.2072966 es_ES
dc.description.references Oggier, G. G., Ordonez, M., Galvez, J. M., Luchino, F., 2014. Fast transient boundary control and steady-state operation of the dual active bridge converter using the natural switching surface. IEEE Trans. Power Electron. 29 (2), 946-957. https://doi.org/10.1109/TPEL.2013.2256150 es_ES
dc.description.references Qin, H., Kimball, J. W., 2014. Closed-loop control of DC-DC dual-activebridge converters driving single-phase inverters. IEEE Trans. Power Electron. 29 (2), 1006-1017. https://doi.org/10.1109/TPEL.2013.2257859 es_ES
dc.description.references Riccobono, A., Cupelli, M., Monti, A., Santi, E., Roinila, T., Abdollahi, H., Arrua, S., Dougal, R. A., 2017. Stability of shipboard dc power distribution. IEEE Electrific. Mag. 5 (3), 55-67. https://doi.org/10.1109/MELE.2017.2718858 es_ES
dc.description.references Rodríguez, F., Garrido, D., Núñez, R., Oggier, G., García, G., 2021. Modelado dinamico y de estado estacionario para la conexión modular entrada serie - salida serie de convertidores con puentes duales activos. Revista Iberoamericana de Automatica e Informática industrial 0 (0). https://doi.org/10.4995/riai.2021.14866 es_ES
dc.description.references Ríos, S. J., Pagano, D. J., Lucas, K. E., 2021. Bidirectional power sharing for dc microgrid enabled by dual active bridge dc-dc converter. Energies 14 (2). https://doi.org/10.3390/en14020404 es_ES
dc.description.references Severns, R., Bloom, G., 1985. Modern DC-to-DC switchmode power converter circuits. Van Nostrand Reinhold electrical/computer science and engineering series. Van Nostrand Reinhold Co. https://doi.org/10.1007/978-94-011-8085-6 es_ES
dc.description.references Siddique, H. A. B., De Doncker, R. W., 2018. Evaluation of DC Collector-Grid Configurations for Large Photovoltaic Parks. IEEE Trans. Power Deliv. 33 (1), 311-320. https://doi.org/10.1109/TPWRD.2017.2702018 es_ES
dc.description.references Slotine, J., Li, W., 1991. Applied Nonlinear Control. Prentice Hall. es_ES
dc.description.references Solsona, J. A., Gomez-Jorge, S., Busada, C. A., 2015. Nonlinear Control of a Buck Converter Which Feeds a Constant Power Load. IEEE Trans. Power Electron. 30 (12), 7193-7201. https://doi.org/10.1109/TPEL.2015.2392371 es_ES
dc.description.references Song, W., Hou, N., Wu, M., 2018. Virtual Direct Power Control Scheme of Dual Active Bridge DC-DC Converters for Fast Dynamic Response. IEEE Trans. Power Electron. 33 (2), 1750-1759. https://doi.org/10.1109/TPEL.2017.2682982 es_ES
dc.description.references Sun, Y., Zhu, J., Fu, C., Chen, Z., 2021. Decoupling Control of Cascaded Power Electronic Transformer based on Feedback Exact Linearization. IEEE Journal of Emerging and Selected Topics in Power Electronics 6777 (c). https://doi.org/10.1109/JESTPE.2021.3069208 es_ES
dc.description.references Xu, Q., Vafamand, N., Chen, L., Dragicevic, T., Xie, L., Blaabjerg, F., 2021. Review on Advanced Control Technologies for Bidirectional DC/DC Converters in DC Microgrids. IEEE Trans. Emerg. Sel. Topics Power Electron. 9 (2), 1205-1221. https://doi.org/10.1109/JESTPE.2020.2978064 es_ES
dc.description.references Yang, S., Wang, P., Tang, Y., 2018. Feedback Linearization-Based Current Control Strategy for Modular Multilevel Converters. IEEE Trans. Power Electron. 33 (1), 161-174. https://doi.org/10.1109/TPEL.2017.2662062 es_ES
dc.description.references Zhang, J., Ouyang, Z., Duffy, M. C., Andersen, M. A. E., Hurley, W. G., 2014. Leakage inductance calculation for planar transformers with a magnetic shunt. IEEE Transactions on Industry Applications 50 (6), 4107-4112. https://doi.org/10.1109/TIA.2014.2322140 es_ES
dc.description.references Zhang, K., Chen, W., Cao, X., Pan, P., Azeem, S. W., Qiao, G., Deng, F., 2020. Accurate calculation and sensitivity analysis of leakage inductance of highfrequency transformer with litz wire winding. IEEE Trans. Power Electron. 35 (4), 3951-3962. https://doi.org/10.1109/TPEL.2019.2936523 es_ES
dc.description.references Zhang, K., Shan, Z., Jatskevich, J., mar 2017. Large- and Small-Signal AverageValue Modeling of Dual-Active-Bridge DC-DC Converter Considering Power Losses. IEEE Trans. Power Electron. 32 (3), 1964-1974. https://doi.org/10.1109/TPEL.2016.2555929 es_ES
dc.description.references Zhou, H., Khambadkone, A. M., 2009. Hybrid modulation for dual-active bridge bidirectional converter with extended power range for ultracapacitor application. IEEE Trans. Ind. Appl. 45 (4), 1434-1442. https://doi.org/10.1109/TIA.2009.2023493 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem