- -

A new brain dedicated PET scanner with 4D detector information

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A new brain dedicated PET scanner with 4D detector information

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author González-Montoro, Andrea es_ES
dc.contributor.author Barbera Ballester, Julio es_ES
dc.contributor.author Sanchez-Gonzalo, David es_ES
dc.contributor.author Mondejar, Álvaro es_ES
dc.contributor.author Freire-López-Fando, Marta es_ES
dc.contributor.author Díaz González, Karel es_ES
dc.contributor.author Lucero-Ruiz, Alejandro es_ES
dc.contributor.author Jiménez-Serrano, Santiago es_ES
dc.contributor.author Alamo Valenzuela, Jorge es_ES
dc.contributor.author Morera Ballester, Constantino es_ES
dc.contributor.author Barrio-Toala, John es_ES
dc.contributor.author Cucarella, Neus es_ES
dc.contributor.author Ilisie, Victor es_ES
dc.contributor.author Moliner Martínez, Laura es_ES
dc.contributor.author Valladares de-Francisco, Celia es_ES
dc.contributor.author González Martínez, Antonio Javier es_ES
dc.contributor.author John Prior es_ES
dc.contributor.author Benlloch Baviera, Jose María es_ES
dc.date.accessioned 2023-07-12T18:00:51Z
dc.date.available 2023-07-12T18:00:51Z
dc.date.issued 2022-12 es_ES
dc.identifier.issn 1895-9091 es_ES
dc.identifier.uri http://hdl.handle.net/10251/194867
dc.description.abstract [EN] In this article, we present the geometrical design and preliminary results of a high sensitivity organ-specific Positron Emission Tomography (PET) system dedicated to the study of the human brain. The system, called 4D-PET, will allow accurate imaging of brain studies due to its expected high sensitivity, high 3D spatial resolution and, by including precise photon time of flight (TOF) information, a boosted signal-to-noise ratio (SNR). The 4D-PET system incorporates an innovative detector design based on crystal slabs (semi-monolithic) that enables accurate 3D photon impact positioning (including photon Depth of Interaction (DOI) measurement), while providing a precise determination of the photon arrival time to the detector. The detector includes a novel readout system that reduces the number of detector signals in a ratio of 4:1 thus, alleviating complexity and cost. The analog output signals are fed to the TOFPET2 ASIC (PETsys) for scalability purposes. The present manuscript reports the evaluation of the 4D-PET detector, achieving best values 3D resolution values of <1.6 mm (pixelated axis), 2.7±0.5 mm (monolithic axis) and 3.4±1.1 (DOI axis) mm; 359 ± 7 ps coincidence time resolution (CTR); 10.2±1.5 % energy resolution; and sensitivity of 16.2% at the center of the scanner (simulated). Moreover, a comprehensive description of the 4D-PET architecture (that includes 320 detectors), some pictures of its mechanical assembly, and simulations on the expected image quality are provided. es_ES
dc.description.sponsorship This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation program (Grant Agreement No. 695536). This work was supported in part by the Spanish Government Grants Generalitat Valenciana, APOSTD/2019/086 and APOSTD/2020/139.We thank financial support from Generalitat Valenciana through the program Equipamiento e Infraestructuras FEDER 2021-22 IDIFEDER/2021/004 es_ES
dc.language Inglés es_ES
dc.publisher Walter de Gruyter GmbH es_ES
dc.relation.ispartof Bio-Algorithms and Medical-Systems es_ES
dc.rights Reconocimiento - Compartir igual (by-sa) es_ES
dc.subject Positron Emission Tomography (PET) es_ES
dc.subject Brain PET es_ES
dc.subject Organ-specific PET es_ES
dc.subject Depth-of-Interaction (DOI) es_ES
dc.subject Time-of-flight (TOF) es_ES
dc.subject Semi-monolithic scintillator es_ES
dc.subject Silicon Photomultiplier (SiPM) es_ES
dc.subject Application-specific-integrated-circuit (ASIC) es_ES
dc.subject.classification TECNOLOGIA ELECTRONICA es_ES
dc.title A new brain dedicated PET scanner with 4D detector information es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.2478/bioal-2022-0083 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/695536/EU es_ES
dc.relation.projectID info:eu-repo/grantAgreement/Generalitat Valenciana//IDIFEDER%2F2021%2F004//TERAPIA Y MONITORIZACIÓN NEUROLÓGICA CON TÉCNICAS FÍSICAS MÚLTIPLES/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//APOSTD%2F2019%2F086/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//APOSTD%2F2020%2F139/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Instrumentación para Imagen Molecular - Institut d'Instrumentació per a Imatge Molecular es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros de Telecomunicación - Escola Tècnica Superior d'Enginyers de Telecomunicació es_ES
dc.description.bibliographicCitation González-Montoro, A.; Barbera Ballester, J.; Sanchez-Gonzalo, D.; Mondejar, Á.; Freire-López-Fando, M.; Díaz González, K.; Lucero-Ruiz, A.... (2022). A new brain dedicated PET scanner with 4D detector information. Bio-Algorithms and Medical-Systems. 18(1):107-119. https://doi.org/10.2478/bioal-2022-0083 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.2478/bioal-2022-0083 es_ES
dc.description.upvformatpinicio 107 es_ES
dc.description.upvformatpfin 119 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 18 es_ES
dc.description.issue 1 es_ES
dc.relation.pasarela S\483008 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder European Research Council es_ES
dc.description.references [1] Phelps ME. Positron emission tomography provides molecular imaging of biological processes. Proc Natl Acad Sci USA. 2000;97:9226–9233. es_ES
dc.description.references [2] Moliner L, Rodríguez-Álvarez MJ, Catret JV, González A, Ilisie V, Benlloch JM, Performance Evaluation of CareMiBrain dedicated brain PET and Comparison with the whole-body and dedicated brain PET systems. Sci Rep. 2019 Oct 29;9(1):15484. doi: 10.1038/s41598-019-51898-z es_ES
dc.description.references [3] González AJ, Sánchez F, Benlloch JM. Organ-dedicated molecular imaging systems. IEEE Trans. Radiat. Plasma Med. Sci., vol. 2, no. 5, pp. 388–403, Sep. 2018. es_ES
dc.description.references [4] Hsu DFC, Freese DL, Reynolds PD, Innes DR, Levin CS. Design and performance of a 1 mm3 resolution clinical PET system comprising 3-D position sensitive scintillation detectors. IEEE Trans. Med. Imag., vol. 37, no. 4, pp. 1058–1066, Apr. 2018, es_ES
dc.description.references [5] Miyaoka RS, Hunter WCJ, DeWitt DQ, Pierce L. Performance characteristics for a low cost, dual sided, position sensitive sparse sensor (DS-PS3) PET detector with depth of interaction positioning. Proc. IEEE Nucl. Sci. Symp. Med. Imag. Conf. es_ES
dc.description.references [6] Benlloch JM, Gonzalez AJ, Pani R, Preziosi E, Jackson C, Murphy J, BArbera J, Correcher C, et al. The MINDVIEW project: First results. Eur. Psychiatry, vol. 50, pp. 21–27, Apr. 2018. es_ES
dc.description.references [7] Marti-Climent JM, Prieto E, Moran V, Sancho L, Rodriguez-Fraile M, Arbizu J, Garcia-Velloso MJ, Ritcher JA. Effective dose estimation for oncological and neurological PET/CT procedures JNMMI Research. vol. 7(37), April 2017. es_ES
dc.description.references [8] Brownell GL, Sweet WH. Localization of brain tumors with positron emitters. Nucleonics, vol. 157, no. 14, pp. 1183–1188, Apr 1955. es_ES
dc.description.references [9] Zaidi H, Montandon ML. The New Challenges of Brain PET Imaging Technology. Curr. Med. Imaging. vol. 2(1), pp. 3-13, 2006. es_ES
dc.description.references [10] Conti M, Bendriem B. The new opportunities for high time resolution clinical TOF PET. Clinic. Trans. Imaging. vol. 7, pp. 139-147, 2019. es_ES
dc.description.references [11] Gonzalez-Montoro A, Aguilar A, Cañizares G, Conde P, Hernandez L, et al. Performance study of a large monolithic LYSO PET detector with accurate photon DOI using retroreflector layers. IEEE Trans. Radiat. Plasma Med. Sci., vol. 1, no. 3, pp. 229–237, May 2017. es_ES
dc.description.references [12] LaBella A, Petersen E, Cao X, Zeng X, Zhao W, Goldan A. 36-to-1 multiplexing with Prism-PET for high resolution TOF-DOI PET. J Nucl Med. 2021; 62(suppl 1):38. es_ES
dc.description.references [13] Majewski S. Perspectives of brain imaging with PET systems. Bio-Algorithms and Med-Systems 17:269–291, 2021. es_ES
dc.description.references [14] Gonzalez-Montoro A, Ullah MN, Levin CS. Advances in detector instrumentation for PET. J. Nucl. Med. vol. 63(8), pp. 1138-1144, Aug 2022. es_ES
dc.description.references [15] Gonzalez-Montoro A, Pourashraf S, Lee MS, Cates JW, Levin CS. Study of optical reflectors for a 100ps coincidence time resolution TOF-PET detector design. Biomed Phys Eng Express. 2021;7:65008. es_ES
dc.description.references [16] Bizarri G. Scintillation mechanisms of inorganic materials: from crystal characteristics to scintillation properties. J Cryst Growth. 2010;312:1213–1215. es_ES
dc.description.references [17] Zhang X, Wang X, Ren N, Kuang Z, Deng X, Fu X, et al., Performance of a SiPM based semi-monolithic scintillator PET detector. Phys. Med. Biol., vol. 62, no. 19, pp. 7889–7904, Sep. 2017. es_ES
dc.description.references [18] Cucarella N, Lamprou E, Valladares C, Benlloch JM, Gonzalez AJ. Timing evaluation of a PET detector block based on semi-monolithic LYSO crystals. Med. Phys. vol 48(12), pp. 8010-8023, Dec 2021. es_ES
dc.description.references [19] Schaart DR, Charbon E, Frach T, Schulz V. Advances in digital SiPMs and their application in biomedical imaging. Nucl Instrum Methods Phys Res A. 2016;809: 31–52. es_ES
dc.description.references [20] Gundacker S. Heering A. The silicon photomultiplier: fundamentals and applications of a modern solid-state photon detector. Phys. Med. Biol. 65 17TR01, 2020. es_ES
dc.description.references [21] Lecoq P, Gundacker S. SiPM applications in positron emission tomography: toward ultimate PET time-of-flight resolution. The European Physical Journal Plus. vol. 136, aticle number: 292, 2021. es_ES
dc.description.references [22] Berg E, Cherry SR. Innovations in instrumentation for positron emission tomography. Semin Nucl Med. 2018;48:311–331. es_ES
dc.description.references [23] Alessio AM, Stearns CW, Tong S, Ross SG, Kohlmyer S, Ganin A, Kinahan PE. Application and Evaluation of a Measured Spatially Variant System Model for PET Image Reconstruction. IEEE Trans. Med. Imaging. vol. 29(3), pp. 938-949, March 2010. es_ES
dc.description.references [24] Benlloch JM, Pavon N, Barbera J, Gonzalez AJ. Topología de red de lectura para dispositivos de tomografía de emisión de positrones con tiempo de vuelo. P202130959 - 12/10/2021. https://aplicat.upv.es/exploraupv/fichatecnologia/patente_software/37411 es_ES
dc.description.references [25] Bugalho R, Di Francesco A, Ferramacho L, Leong C, Niknejad T, Oliveira L, Rolo M, Silva JC, Silveira M. Experimental characterization of the TOFPET2 ASIC. JINST 14 P03029, 2019. es_ES
dc.description.references [26] Herbert G, Duffau H. Revisiting the Functional Anatomy of the Human Brain: Toward a Meta-Networking Theory of Cerebral Functions. Physiolo. Reviews. vol. 100(3), pp. 1181-1228, 2020. es_ES
dc.description.references [27] Moskal P, Stepien Ewa. Prospects and Clinical Perspectives of Total-Body PET Imaging Using Plastic Scintillators. PET Clin. 5(4):439-452, 2020. es_ES
dc.description.references [28] Moskal P, Kowalski P, Shopa R Y, et al. Simulating NEMA characteristics of the modular total-body J-PET scanner—an economic total-body PET from plastic scintillators. Phys. Med. Biol. 67 175015, 2021. es_ES
dc.description.references [29] Pawel P, Dulski K, Chug N, et al., Positronium imaging with the novel multiphoton PET scanner. Sci Adv; 7(42), 2021. es_ES
dc.description.references [30] Levin CS. Promising Detector Concepts to Advance Coincidence Time Resolution for Time-of-Flight Positron Emission Tomography. Acta. Phys. Polon. A 142:422, 2022. es_ES
dc.description.references [31] Gonzalez-Montoro A, Gonzalez AJ, Pourashraf S, et al. Evolution of PET detectors and event positioning algorithms using monolithic scintillation crystals. IEEE Trans Radiat Plasma Med Sci; 5:282–305, 2021. es_ES
dc.description.references [32] Müller F, Naunheim S, Kuhl Y, Schug D, Solf T, Schulz V. A Semi-Monolithic Detector providing intrinsic DOI-encoding and sub-200 ps CRT TOF-Capabilities for Clinical PET Applications. Inst. Det; Med. Phys. arXiv:2203.02535, 2022. es_ES
dc.description.references [33] 3MTM Enhanced Specular Reflector Films (ESR). Technical data, 2020. https://multimedia.3m.com/mws/media/1245089O/3m-enhanced-specular-reflector-films-3m-esr-tech-data-sheet.pdf es_ES
dc.description.references [34] BC-630 Silicone Optical Grease, Saint Gobain datasheet. https://www.crystals.saint-gobain.com/radiation-detection-scintillators/assembly-materials es_ES
dc.description.references [35] MPPC® (Multi-pixel photon counter), S13360 Series, Hamamatsu Photonics. https://www.hamamatsu.com es_ES
dc.description.references [36] Python 3.0 user guide. https://www.python.org/doc/ es_ES
dc.description.references [37] Freire M, Echegoyen S, Gonzalez-Montoro A, Sanchez F, Gonzalez AJ. Performance Evaluation of Side-by-Side Optically Coupled Monolithic LYSO Crystals. Med. Phys. vol. 49(8), pp. 5616-5626, 2022. es_ES
dc.description.references [38] Jan S, Santin G, Strul D, Steaelens S, Assie K, Autret D, Avner S, Barbier R, et al. GATE: a simulation toolkit for PET and SPECT. Phys Med Biol. vol. 49(19), pp. 4543-61, 7 Oct 2004. es_ES
dc.description.references [39] NEMA NU 4-2008. Performance measurements of Small Animal Positron Emission Tomographs. (Association, National Electrical Manufacturers, 2008). es_ES
dc.description.references [40] Moliner L, Correcher C, Gonzalez AJ, Conde P, Hernandez L, Orero A, Rodriguez-Alvarez MJ, Sanchez F, Soriano A, Vidal LF, Benlloch JM. Implementation and analysis of list mode algorithm using tubes of response on a dedicated brain and breast PET. Nucl Instrum Methods Phys Res A. vol 702, pp. 129-132. 2013. es_ES
dc.description.references [41] Herzog H, Tellmann L, Marx B, Rota Kops E, Scheins J, Weirich C, Shah NJ. Performance Tests and Preliminary Results of the 3TMR-BrainPET Scanner Installed at the Forschungszentrum Jülich. WC 2009, IFMBE Proceedings 25/II, pp. 677–680, 2009. es_ES
dc.description.references [42] Van Vonderen K, Leonard S, Linscheid L, Gruchot M, Dillehay G. Image quality assessment of Hoffman brain phantom scans performed on a next generation and previous generation PET/CT scanners. Image quality assessment of Hoffman brain phantom scans performed on a next generation and previous generation PET/CT scanners. J. Nucl. Med. vol. 60(1) 2052. May 2019. es_ES
dc.description.references [43] Vandenberghe S, Moskal P, Karp JS. State of the art in total body PET. EJNMMI Phys. 2020;7:35. es_ES
dc.description.references [44] Spencer BA, Berg E, Schmall JP, Omidvari N, Leung EK, et al. Performance Evaluation of the uEXPLORER Total-Body PET/CT Scanner Based on NEMA NU 2-2018 with Additional Tests to Characterize PET Scanners with a Long Axial Field of View. J. Nucl. Med. vol. 1(62), pp. 861-870. Jun 2021. es_ES
dc.description.references [45] Karlberg AM, Sæther O, Eikenes L, Goa PE. Quantitative comparison of PET performance-Siemens Biograph mCT and mMR. EJNMMI Phys. vol. 3(1): 5. Dec 2016. es_ES
dc.description.references [46] Surti S, Kuhn A, Werner ME, Perkins AE, Kolthammer J, Karp JS. Performance of Philips Gemini TF PET/CT scanner with special consideration for its time-of-flight imaging capabilities. J. Nucl. Med. vol. 48(3), pp. 471-80. Mar 2007. es_ES
dc.description.references [47] Caribe PRRV, Koole M, D’asseler Y, Deller TW, Van Laere K, Vandenberghe S. NEMA NU 2–2007 performance characteristics of GE Signa integrated PET/MR for different PET isotopes. EJNMMI Physics. vol. 6(11). July 2019. es_ES
dc.description.references [48] Gaudin E, Toussaint M, Thibaudeau C, Fontaine R, Normandin M, Petibon Y, Ouyang J, El Fakhri G, Lecomte R. Simulation Studies of the SAVANT High Resolution Dedicated Brain PET Scanner Using Individually Coupled APD Detectors and DOI Encoding. J. Nucl. Med. vol. 60(1), pp. 531. May 2019. es_ES
dc.description.references [49] Gonzalez AJ, Gonazlez-Montoro A, Aguilar A, et al., “Initial results of the MINDView PET insert inside the 3T mMR. IEEE Trans. Radiat. Plasma Med. Sci., vol. 3, no. 3, pp. 343–351, May 2019. es_ES
dc.description.references [50] Ceccarini J, Liu H, Van Laere K, Morris ED, Sander CY. Methods for Quantifying Neurotransmitter Dynamics in the Living Brain With PET Imaging. Front. Physiol., 10.3389. July 2020. es_ES
dc.description.references [51] Yang J, Hu C, Guo N, Dutta J, Vaina LM, Johnson KA, Sepulcre J, El Fakhri G, Li Q. Partial volume correction for PET quantification and its impact on brain network in Alzheimer’s disease. Scientific Reports. vol. 7, article number: 13035. Oct 2017. es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem