- -

The Microbially Extended Phenotype of Plants, a Keystone against Abiotic Stress

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

The Microbially Extended Phenotype of Plants, a Keystone against Abiotic Stress

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Ruiz-González, Mario X. es_ES
dc.contributor.author Vicente, Oscar es_ES
dc.date.accessioned 2023-07-24T18:02:50Z
dc.date.available 2023-07-24T18:02:50Z
dc.date.issued 2022-10-01 es_ES
dc.identifier.uri http://hdl.handle.net/10251/195427
dc.description.abstract [EN] Background: Climate change affects every region across the globe with heterogeneous effects on local temperatures and precipitation patterns. In plants, sessile organisms, climate change imposes more drastic effects leading to loss of yield or even death. However, plants establish mutualistic interactions with microorganisms that boost plant tolerance against abiotic stresses or strengthen the plant immune system against pathogens, thus, enhancing their survival and fitness. Moreover, in the wild, microbial endophytes provide important ecosystem services. Purpose and scope: Little we know about the mechanisms of response against the adverse effects of climate change on natural populations of wild plants and even less about the potential role played by microbial biostimulants. In this article, we review the effects of biostimulants on plant responses against abiotic stresses, with a particular focus on the role of mycorrhizas and leaf endophytes. Results: We have reviewed the effects of the main abiotic stresses in plants, the mechanisms that plants use to face these abiotic challenges, and the interaction plant-biostimulant-abiotic stress, highlighting the primary responses and parameters to evaluate different plant responses. Conclusion: Abiotic stresses can check the phenotypic plasticity of plants and also trigger a complex and heterogeneous array of responses to face different abiotic stresses, and beneficial microorganisms do play an essential role in enhancing such responses. Our laboratory has initiated a project to characterise microbial populations associated with plants from wild areas and analyse their potential role in aiding the plants to cope with abiotic stresses. es_ES
dc.description.sponsorship This study was supported by a Maria Zambrano distinguished researcher contract to MXR-G, and funded by both the Ministerio de Universidades (Gobierno de Espana) and the Next generation EU. The authors have no competing financial interests. es_ES
dc.language Inglés es_ES
dc.publisher European Biotechnology Thematic Network Association es_ES
dc.relation.ispartof The Eurobiotech Journal es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Abiotic stress es_ES
dc.subject Climate change es_ES
dc.subject Phenotypic plasticity es_ES
dc.subject Endophyte es_ES
dc.subject Mutualism es_ES
dc.subject.classification BIOQUIMICA Y BIOLOGIA MOLECULAR es_ES
dc.title The Microbially Extended Phenotype of Plants, a Keystone against Abiotic Stress es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.2478/ebtj-2022-0017 es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería Agronómica y del Medio Natural - Escola Tècnica Superior d'Enginyeria Agronòmica i del Medi Natural es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Conservación y Mejora de la Agrodiversidad Valenciana - Institut Universitari de Conservació i Millora de l'Agrodiversitat Valenciana es_ES
dc.description.bibliographicCitation Ruiz-González, MX.; Vicente, O. (2022). The Microbially Extended Phenotype of Plants, a Keystone against Abiotic Stress. The Eurobiotech Journal. 6(4):174-182. https://doi.org/10.2478/ebtj-2022-0017 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.2478/ebtj-2022-0017 es_ES
dc.description.upvformatpinicio 174 es_ES
dc.description.upvformatpfin 182 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 6 es_ES
dc.description.issue 4 es_ES
dc.identifier.eissn 2564-615X es_ES
dc.relation.pasarela S\476369 es_ES
dc.contributor.funder European Commission es_ES
dc.contributor.funder Ministerio de Universidades es_ES
dc.description.references 1. Kassen R. The experimental evolution of specialists, generalists, and the maintenance of diversity. J Evol Biol 2002; 15:173-190.10.1046/j.1420-9101.2002.00377.x es_ES
dc.description.references 2. Elewa AMT & Joseph R. The History, Origins, and Causes of Mass Extinctions. J Cosmol 2009); 2: 201-220. es_ES
dc.description.references 3. Raup D, Sepkowski JJ. Mass Extinctions in the Marine Fossil Record. Science 1982; 215:1501-1503. doi: 10.1126/science.215.4539.150117788674 es_ES
dc.description.references 4. Butchart SHM, Walpole M, Collen B, van Strien A, Scharlemann JPW, et al. Global Biodiversity: Indicators of Recent Declines. Science 2010; 328:1164-1168. doi: 10.1126/science.118751220430971 es_ES
dc.description.references 5. IPCC. Climate Change 2021. Intergovernmental Panel on Climate Change, Switzerland 202110.1017/9781009157988 es_ES
dc.description.references 6. Scheffers BR, De Meester L, Bridge TCL, et al. The broad footprint of climate change from genes to biomes to people. Science 2016; 354(6313):aaf7671.10.1126/science.aaf767127846577 es_ES
dc.description.references 7. Breazeale JF. A study of the toxicity of salines that occur in black alkali soils. Ariz Agr Exp Sta Tech Bul 2021; 14:337-357. es_ES
dc.description.references 8. Imran QM, Falak N, Hussain A, Mun B-G, Yun B-W. Abiotic Stress in Plants; Stress Perception to Molecular Response and Role of Biotechnological Tools in Stress Resistance. Agronomy 2021; 11:1579. doi: 10.3390/agronomy11081579. es_ES
dc.description.references 9. Boyer JS. Plant productivity and environment. Science 1982; 218:443-448. doi: 10.1126/science.218.4571.443.17808529 es_ES
dc.description.references 10. He M, He C-Q, Ding N-Z. Abiotic stresses: general defences of land plants and chances for engineering multistress tolerance. Front Plant Sci 2018; 9:1771. doi: 10.3389/fpls.2018.01771.629287130581446 es_ES
dc.description.references 11. Martí MC, Stancombe MA, Webb AAR. Cell- and Stimulus Type-Specific Intracellular Free Ca2+ Signals in Arabidopsis. Plant Physiol 2013; 163:625-634. doi: 10.1104/pp.113.222901379304324027243 es_ES
dc.description.references 12. Liu Q, Ding Y, Shi Y, Ma L, Wang Y, et al. The calcium transporter ANNEXIN1 mediates cold-induced calcium signaling and freezing tolerance in plants. The EMBO J 2021; 40:e104559.10.15252/embj.2020104559780978633372703 es_ES
dc.description.references 13. Zhang H, Zhu J, Gong Z, Zhu J-K. Abiotic stress in plants. Nat Rev Genet 2022; 23:104-119. doi: 10.1038/s41576-021-00413-034561623 es_ES
dc.description.references 14. Jung J-H, Domijan M, Klose C, Biswas S, Ezer D, et al. Phytochromes function as thermosensors in Arabidopsis. Science 2016; 354:886-889.10.1126/science.aaf600527789797 es_ES
dc.description.references 15. Legris M, Klose C, Burgie AE, et al. Phytochrome B integrates light and temperature signals in Arabidopsis. Science 2016; 354:897-900.10.1126/science.aaf565627789798 es_ES
dc.description.references 16. Krishna P. Plant response to heat stress. In: Hirt H, Shinozaki K, eds. Plant Responses to Abiotic Stress, Topics in Current Genetics; 2004:73-101.10.1007/978-3-540-39402-0_4 es_ES
dc.description.references 17. Alvarez-Ponce D, Ruiz-González MX, Vera-Sirera F, Feyertag F, Perez-Amador MA, Fares MA. Arabidopsis Heat Stress-Induced Proteins Are Enriched in Electrostatically Charged Amino Acids and Intrinsically Disordered Regions. Int J Mol Sci 2018; 19:2276.10.3390/ijms19082276612153130081447 es_ES
dc.description.references 18. Kai H & Iba K. Temperature stress in Plants. In eLS; John Wiley & Sons, Chichester; 2014.10.1002/9780470015902.a0001320.pub2 es_ES
dc.description.references 19. Hu Y & Schmidhalter U. Limitation of salt stress to plant growth. In Hock B, Elsner EF, eds. Plant Toxicology 4th ed. Boca Raton, FL, CRC Press; 2004:191-22410.1201/9780203023884.ch5 es_ES
dc.description.references 20. Daliakopoulos IN, Tsanis IK, Koutroulis A, et al. The threat of soil salinity: A European scale review. Sci Total Environ 2016; 573: 727-739.10.1016/j.scitotenv.2016.08.17727591523 es_ES
dc.description.references 21. Parihar P, Singh S, Singh R, Singh, VP, Prasad SM. Effect of salinity stress on plants and its tolerance strategies: a review. Environ Sci Pollut Res 2015; 22:4056–4075.10.1007/s11356-014-3739-125398215 es_ES
dc.description.references 22. Harper RJ, Dell B, Ruprecht JK, Sochacki SJ & Smetten KRJ. Salinity and the reclamation of salinized lands. In: Stanturf JA, Callahan Jr MA eds. Soils and Landscape Restoration. Academic Press, Elsevier, 2021:193-208.10.1016/B978-0-12-813193-0.00007-2 es_ES
dc.description.references 23. Al-shareef NO, Tester M. Plant Salinity Tolerance. In: eLS. John Wiley & Sons, Ltd: Chichester 2019. doi:10.1002/9780470015902.a0001300.pub310.1002/9780470015902.a0001300.pub3 es_ES
dc.description.references 24. Kumar A, Singh S, Gaurav AK, Srivastava S & Verma JP. Plant Growth-Promoting Bacteria: Biological Tools for the Mitigation of Salinity Stress in Plants. Front Microbiol 2020; 11:1216.10.3389/fmicb.2020.01216 es_ES
dc.description.references 25. Roy SJ, Negrao S, Tester M. Salt resistant crop plants. Curr Op Biotechnol 2014; 26:115–124. doi: 10.1016/j.cop-bio.2013.12.004 es_ES
dc.description.references 26. Molden D, Vithanage M, de Fraiture C, et al. Availability and Its Use in Agriculture. In: Wilderer P, ed. Treatise on Water Science, Elsevier; 2011:707–732.10.1016/B978-0-444-53199-5.00108-1 es_ES
dc.description.references 27. Farooq M, Hussain M, Wahid A & Siddique KHM. Drought stress in plants: an overview. In: Aroca R ed. Plant responses to drought stress, Springer. 2012.10.1007/978-3-642-32653-0_1 es_ES
dc.description.references 28. Zargar SM, Gupta N, Nazir M, et al. Impact of drought on photosynthesis: Molecular perspective. Plant Gene 2017; 11:154-159. doi: 10.1016/j.plgene.2017.04.00 es_ES
dc.description.references 29. Wang W, Vinocur B, Altman A. Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta 2003; 218:1-14. doi: 10.1007/s00425-003-1105-5 es_ES
dc.description.references 30. Sultan SE. Phenotypic plasticity for plant development, function and life history. Trends Plant Sci 2000; 5(12):537-542.10.1016/S1360-1385(00)01797-0 es_ES
dc.description.references 31. Boscaiu M, Lull C, Lidón A, et al. Plant responses to abiotic stress in their natural habitats. Bull UASVM, Horticulture 2008; 65:53-58. es_ES
dc.description.references 32. Bradshaw AD. Evolutionary Significance of Phenotypic Plasticity in Plants. Adv Genet 1965; 13:115–155. doi: 10.1016/s0065-2660(08)6004 es_ES
dc.description.references 33. Bonnier G. Les plantes de la région alpine et leurs rapports avec le climat. Ann Géograph 1895; 4(17):393-413. doi: https://doi.org/10.3406/geo.1895.5724.10.3406/geo.1895.5724 es_ES
dc.description.references 34. Matesanz S, Gianoli E, Valladares F. Global change and the evolution of phenotypic plasticity in plants. Ann NY Acad Sci 2010; 1206:35-55. doi: 10.1111/j.1749-6632.2010.05704.x20860682 es_ES
dc.description.references 35. Schlichting, C. D. 1986. The Evolution of Phenotypic Plasticity in Plants. Ann. Rev. Ecol. Syst. 17, 667–693. doi: 10.1146/annurev.es.17.1101 es_ES
dc.description.references 36. Gordo, O. & Sanz J. J. 2010. Impact of climate change on plant phenology in Mediterranean ecosystems. Global change Biol. 16, 1082-1106. doi: 10.1111/j.1365-2486.2009.02084.x es_ES
dc.description.references 37. Meier U, Bleiholder H, Buhr L, et al. The BBCH system to coding the phenological growth stages of plants – history and publications – J KULTURPFL 2009; 61(2):S41–52. es_ES
dc.description.references 38. Bradley NL, Leopold AC, Ross J & Huffaker W. Phenological changes reflect climate change in Wisconsin. PNAS 1999; 96:9701-9704. doi: 10.1073/pnas.96.17.97012227310449757 es_ES
dc.description.references 39. Fitter AH & Fitter RSR. Rapid Changes in Flowering Time in British Plants. Science 2002; 296: 1689-1691. doi: 10.1126/science.107161 es_ES
dc.description.references 40. Lee HK, Lee SJ, Kim MK & Lee SD. Prediction of Plant Phenological Shift under Climate Change in South Korea. Sustainability 2020; 12:9276.10.3390/su12219276 es_ES
dc.description.references 41. Primack RB, Ibáñez I, Higuchi H, et al. Spatial and interspecific variability in phenological responses to warming temperatures. Biol Conserv 2009; 142:2569-2577. doi: 10.1016/j.biocon.2009.06.003 es_ES
dc.description.references 42. Bond WJ. Keystone Species. In: Schulze E-D et al. eds. Biodiversity and Ecosystem Function, Springer-Verlag Berlin Heidelberg, 1994:237–253. doi: 10.1007/978-3-642-58001-7_11. es_ES
dc.description.references 43. Rawat US; Agarwal NK. Biodiversity: Concept, threats and conservation. Environ Conserv J 2015; 16:9-28. doi: 10.36953/ECJ.2015.16303 es_ES
dc.description.references 44. Costanza R, et al. The value of the world’s ecosystem services and natural capital. Nature 1997; 387:253-260.10.1038/387253a0 es_ES
dc.description.references 45. Barbier EB, Hacker SD, Kennedy C, Koch EW, Stier AC, Sillman BR. The value of estuarine and coastal ecosystem services. Ecol Mon 2011; 81(2):169-193.10.1890/10-1510.1 es_ES
dc.description.references 46. Gedan KB, Silliman BR & Bertness MD. Centuries of human-driven change in salt marsh ecosystems. Annu Rev Mar Sci 2009; 1:117–41.10.1146/annurev.marine.010908.16393021141032 es_ES
dc.description.references 47. Adams JB, Raw JL, Riddin T, Wasserman J, Van Niekerk L.. Salt marsh restoration for the provision of multiple ecosystem services. Diversity 2021; 13:680. doi: 10.3390/d13120680 es_ES
dc.description.references 48. Stevanović ZD, Aćić S, Stešević D, Luković M, Šilc U. Halophytic vegetation in South-east Europe: Classification, conservation and ecogeographical patterns. In: Hasanuzzaman M, Shabala S, Fujita M, eds. Halophytes and climate change. CAB International, UK; 2019:55-68.10.1079/9781786394330.0055 es_ES
dc.description.references 49. Rothschild LJ, Mancinelli RL. Life in extreme environments. Nature 2001; 409:1092-1101.10.1038/3505921511234023 es_ES
dc.description.references 50. Galuzzi G, Seyoum A, Halewood M, López Noriega I & Welch EW. The Role of Genetic Resources in Breeding for Climate Change: The Case of Public Breeding Programmes in Eighteen Developing Countries. Plants 2020; 9:1129. doi: 10.3390/plants9091129756978032878309 es_ES
dc.description.references 51. Passamonti MM, Somenzi E, Barbato M, et al. The Quest for Genes Involved in Adaptation to Climate Change in Ruminant Livestock. Animals 2021; 11:2833. doi: 10.3390/ani11102833853262234679854 es_ES
dc.description.references 52. Carroll G. Fungal Endophytes in Stems and Leaves: From Latent Pathogen to Mutualistic Symbiont. Ecology 1988; 69:2–9. doi: 10.2307/1943154 es_ES
dc.description.references 53. Rodriguez RJ, White Jr JF, Arnold AE, Redman RS. Fungal endophytes: diversity and functional roles. New Phytol 2009; 182:314-330. doi: 10.1111/j.1469-8137.2009.02773.x19236579 es_ES
dc.description.references 54. Bonfante P & Anca I-A. Plants, Mycorrhizal Fungi, and Bacteria: A Network of Interactions. Annu Rev Microbiol 2009; 63:363-383. doi: 10.1146/annurev.micro.091208.07350419514845 es_ES
dc.description.references 55. Redecker D, Kodner R, Graham LE. Glomalean Fungi from the Ordovician. Science 2000; 289:1920-1921. doi: 10.1126/science.289.5486.19 es_ES
dc.description.references 56. van der Heijden MGA, Klironomos JN, Ursic M, et al. Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature 1998; 396:69-72.10.1038/23932 es_ES
dc.description.references 57. Chen M, Arato M, Borghi L, Nouri E & Reinhardt D. Beneficial services or arbuscular mycorrhizal fungi – From ecology to application. Front Plant Sci 2018; 9:1270.10.3389/fpls.2018.01270613219530233616 es_ES
dc.description.references 58. Hardoim PR, et al. The Hidden World within Plants: Ecological and Evolutionary Considerations for Defining Functioning of Microbial Endophytes. Microbiol Mol Biol Rev 2015; 79:293-320. doi: 10.1128/MMBR.00050-14.448837126136581 es_ES
dc.description.references 59. Link HF. Observationes in ordines plantarum naturales, dissertatio prima, complectens anandrarum ordines Epiphytas, Mucedines, Gastromycos et Fungos. Der Gesellschaft Naturforschender Freunde zu Berlin, Berlin, Germany. 1809:3-42. https://hdl.handle.net/2027/hvd.32044106318025 es_ES
dc.description.references 60. Berch SM, Massicotte HB & Tackaberry LE. Re-publication of a translation of ‘The vegetative organs of Monotropa hypopitys L.’ published by F. Kamienski in 1882, with an update on Monotropa mycorrhizas. Mycorrhiza 2005; 15:323-332. doi: 10.1007/s00572-004-0334-1.15549481 es_ES
dc.description.references 61. Frank AB. Über die auf Wurzelsymbiose beruhende Ernährung gewisser Bäume durch unterirdische Pilze. Ber Dtsch Bot Ges 1885; 3: 128–145. es_ES
dc.description.references 62. Woronin MS. Über die bei der schwarzerle (Alnus glutinosa) und der gewöhnlichen garten-lupine (Lupinus mutabilis) auftretenden Wurzelaufschwellungen. Mém de l’Acad Imp des Sciences de St-Petersbourg 1866; X6. es_ES
dc.description.references 63. Marquez LM, Redamn RS, Rodriguez RJ, Roossinck MJ. A Virus in a Fungus in a Plant: Three-Way Symbiosis Required for Thermal Tolerance. Science 2007; 315:513-515. doi: 10.1126/science.113623717255511 es_ES
dc.description.references 64. Roossinck MJ. The good viruses: viral mutualistic symbioses. Nat Rev Microbiol 2011; 9: 99-108. doi: 10.1038/nr-micro2491 es_ES
dc.description.references 65. Lata R, Chowdhury S, Gond S K, White Jr JF. Induction of abiotic stress tolerance in plants by endophytic microbes. Lett. Appl. Microbiol. 2018; 66:268-276. es_ES
dc.description.references 66. Drobeck M, Frac M & Cybulska J. Plant Biostimulants: Importance of the Quality and Yield of Horticultural Crops and the Improvement of Plant Tolerance to Abiotic Stress—A Review. Agronomy 2019; 9:335. doi: 10.3390/agronomy9060335 es_ES
dc.description.references 67. Poveda J. Beneficial effects of microbial volatile compounds (MVOCs) in plants. Appl Soil Ecol 2021; 168:104118. doi: 10.1016/j.apsoil.2021.104118 es_ES
dc.description.references 68. Povero G, Mejoa JF, Di Tommaso D, Piaggesi A, Warrior P. A systematic approach to discover and characterize natural plant Biostimulants. Front Plant Sci 2016; 7:435.10.3389/fpls.2016.00435482045627092156 es_ES
dc.description.references 69. Akiyama K, Matsuzaki K-I, Hayashi H. Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature 2005; 435:824-827.10.1038/nature0360815944706 es_ES
dc.description.references 70. Gutjar C & Parniske M. Cell and Developmental Biology of Arbuscular Mycorrhiza Symbiosis. Annu Rev Cell Dev Biol 2013; 29:593–617.10.1146/annurev-cellbio-101512-12241324099088 es_ES
dc.description.references 71. Souza R, Ambrosini A, Passagliaa LMP. Plant growth-promoting bacteria as inoculants in agriculture soils. Genet Mol Biol 2015; 38 (4):401-419.10.1590/S1415-475738420150053476332726537605 es_ES
dc.description.references 72. Lee E-H, Eo J-K, Ka K-H & Eom A-H. Diversity of arbuscular mycorrhizal fungi and their roles in ecosystems. Mycobiology 2013; 41(3):121-125.10.5941/MYCO.2013.41.3.121381722524198665 es_ES
dc.description.references 73. Garbaye J. Helper bacteria: a new dimension to the mycorrhizal symbiosis. New Phytol 1994; 128:197–210.10.1111/j.1469-8137.1994.tb04003.x33874371 es_ES
dc.description.references 74. Brundrett MC. Coevolution of roots and mycorrizas of land plants. New Phytol 2002; 154:275-304.10.1046/j.1469-8137.2002.00397.x33873429 es_ES
dc.description.references 75. Brundrett MC, Terdersoo L. Evolutionary history of mycorrhizal symbioses and global host plant diversity. New Phytol 2018; 220:1108–1115.10.1111/nph.1497629355963 es_ES
dc.description.references 76. Leroy C, Séjalon-Delmas N, Jauneau A, Ruiz-González MX, et al. Trophic mediation by a fungus in an ant–plant mutualism. J Ecol 2011; 99:583-590. doi: 10.1111/j.1365-2745.2010.01763.x es_ES
dc.description.references 77. Moore D, Robson GD, Trinci APJ. 21st Century Guidebook to Fungi, 2019.10.1017/9781108776387 es_ES
dc.description.references 78. Gianinazzi S, Gollotte A, Binet M-N, van Tuinen D, Redecker D & Wipf D. Agroecology: the key role of arbuscular mycorrhizas in ecosystems services. Mycorrhiza 2010; 20:519-530.10.1007/s00572-010-0333-320697748 es_ES
dc.description.references 79. Goh C-H, Veliz Vallejos DF, Nicotra AB & Mathesius U. The impact of beneficial plant-associated microbes on plant phenotypic plasticty. J Chem Ecol 2013; 39:826-839.10.1007/s10886-013-0326-8373883823892542 es_ES
dc.description.references 80. Poudel M, Mendes R, Costa LAS, et al. The Role of Plant-Associated Bacteria, Fungi, and Viruses in Drought Stress Mitigation. Front Microbiol 2021; 12:743512. doi: 10.3389/fmicb.2021.743512857335634759901 es_ES
dc.description.references 81. Feng G, Zhang FS, Li XL, Tian CY, Tang C, Rengel Z. Improved tolerance of maize plants to salt stress by arbuscular mycorrhiza is related to higher accumulation of soluble sugars in roots. Mycorrhiza 2002; 12:185-90.10.1007/s00572-002-0170-012189473 es_ES
dc.description.references 82. Augé RM. Water relations, drought and vesicular-arbuscular mycorrhizal symbiosis. Mycorrhiza 2001; 11:3-42.10.1007/s005720100097 es_ES
dc.description.references 83. Carvalho LM, Correia PM, Caçador I & Martins-Louçao AM. Effects of salinity and flooding on the infectivity of salt marsh arbuscular mycorrhizal fungi in Aster tripolium L. Biol Fertil Soils 2003; 38:137-143.10.1007/s00374-003-0621-6 es_ES
dc.description.references 84. Lubna, Muhammad AK, Sajjad A, Rahmatullah J, Muhammad W, Kyung-Min K & In-Jung L. Endophytic fungus Bi-polaris sp. CSL-1 induces salt tolerance in Glycine max.L via modulating its endogenous hormones, antioxidative system and gene expression. J Plant Interact 2022; 17: 319-332. doi: 10.1080/17429145.2022.2036836. es_ES
dc.description.references 85. Qing L, Zhehong H, Caisheng D, Kuan-Hung L, Shumei H & ShiPeng C. Endophytic Klebsiella sp. San01 promotes growth performance and induces salinity and drought tolerance in sweet potato (Ipomoea batatas L.), J Plant Interact 2022; 17: 608-619. doi: 10.1080/17429145.2022.2077464 es_ES
dc.description.references 86. O’Brien AM, Ginnan NA, Rebolleda-Gómez M, Wagner MR. Microbial effects on plant phenology and fitness. Am J Bot 2021; 108:1824–1837. doi: 10.1002/ajb2.174334655479 es_ES
dc.description.references 87. Wagner MR, Lundberg DS, Coleman-Derr D, Tringe SG, Dangl JL, Mitchell-Olds T. Natural soil microbes alter flowering phenology and the intensity of selection on flowering time in a wild Arabidopsis relative. Ecol Lett 2014; 17:717-726. doi: 10.1111/ele.12276404835824698177 es_ES
dc.description.references 88. Orozco-Mosqueda MC, Fadiji AE, Babalola OO, Glick BR & Santoyo G. Rhizobiome engineering: Unveiling complex rhizosphere interactions to enhance plant growth and health. Microbiol Res 2022; 263: 127137. doi: 10.1016/j.micres.2022.12713735905581 es_ES
dc.description.references 89. Glick BR. Using soil bacteria to facilitate phytoremediation. Biotechnol Adv 2010; 28:367-374.10.1016/j.biotechadv.2010.02.00120149857 es_ES
dc.description.references 90. Qian S, Xiaoshuang S, Xun D, Jiayu L, Junkai W, Kai M & Ruiqing S. Effects of plant growth promoting Rhizobacteria microbial on the growth, rhizosphere soil properties, and bacterial community of Pinus sylvestris var. mongolica seedlings. Scand J For Res 2021; 36: 249-262. doi: 10.1080/02827581.2021.1917649 es_ES
dc.description.references 91. Ulrich DEM, Sevanto S, Ryan M, Albright MBN, Johansen RB & Dunbar JM. Plant-microbe interactions before drought influence plant physiological responses to subsequent severe drought. Sci Rep 2019; 9: 249. doi: 10.1038/s41598-018-36971-3634297830670745 es_ES
dc.description.references 92. de Almeida JR, Bonatelli ML, Durante Batista B, Teixeira-Silva NS, Mondin M, dos Santos RC, Simoes Bento, JM, Azevedo Jm, Quecine MC. Bacillus thuringiensis RZ2MS9, a tropical plant growth-promoting rhizobacterium, colonizes maize endophytically and alters the plant’s production of volatile organic compounds during co-inoculation with Azospirillum brasilense Ab-V5. Environ Microbiol Rep 2021: 13: 812–821 doi: 10.1111/1758-2229.1300434433236 es_ES
dc.description.references 93. Bonatelli ML, Lacerda-Júnior GV, dos Reis Junior FB, Fernandes-Júnior PV, Soares Melo I & Quecine MC. Beneficial plant-associated microorganisms from semi-arid regions and seasonally dry environments: a review. Front Microbiol 2021; 11:553223.10.3389/fmicb.2020.553223784545333519722 es_ES
dc.description.references 94. Lemfack MC, Gohlke B-O, Toguem SMT, et al. mVOC 2.0: a database of microbial volatiles. Nucleic Acids Res 2018; 46(D1):D1261-D1265.10.1093/nar/gkx1016575329729106611 es_ES
dc.description.references 95. Morsy MR, Oswald J, He J, Tang Y & Roossinck MJ. Teasing apart a three-way symbiosis: transcriptome analyses of Curvularia protuberata in response to viral infection and heat stress. Biochem Biophys Res Commun 2010; 401:225–230. doi: 10.1016/j.bbrc.2010.09.03420849822 es_ES
dc.subject.ods 13.- Tomar medidas urgentes para combatir el cambio climático y sus efectos es_ES
dc.subject.ods 15.- Proteger, restaurar y promover la utilización sostenible de los ecosistemas terrestres, gestionar de manera sostenible los bosques, combatir la desertificación y detener y revertir la degradación de la tierra, y frenar la pérdida de diversidad biológica es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem