- -

Non-linear Neutrosophic Numbers and Its Application to Multiple Criteria Performance Assessment

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Non-linear Neutrosophic Numbers and Its Application to Multiple Criteria Performance Assessment

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Reig-Mullor, Javier es_ES
dc.contributor.author Salas-Molina, Francisco es_ES
dc.date.accessioned 2023-09-14T18:00:25Z
dc.date.available 2023-09-14T18:00:25Z
dc.date.issued 2022-09 es_ES
dc.identifier.issn 1562-2479 es_ES
dc.identifier.uri http://hdl.handle.net/10251/196526
dc.description.abstract [EN] The concept of fuzzy set has been extended by neutrosophic fuzzy sets to represent sets whose elements have different degrees of membership characterized by a truth-membership function, an indeterminacy-membership function and a falsity-membership function. It is usually assumed that these functions are linear, hence excluding the possibility of non-linearity in many decision-making situations. From an alternative definition of non-linear neutrosophic numbers, we develop the concepts of (alpha, beta, gamma)-cuts, possibility mean, variance, skewness and a new possibility score function. These concepts are useful to deal with multiple criteria decision making problems. We illustrate the practical use of these concepts by means of a real case study in supply chain risk management in the motor industry. Due to the fact that neutrosophic sets have been used in several areas of decision-making, finance and economics, we argue that our proposal contributes to enhance the application of neutrosophic numbers. es_ES
dc.description.sponsorship Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature. es_ES
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof International Journal of Fuzzy Systems es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Neutrosophic numbers es_ES
dc.subject Non-linearity es_ES
dc.subject Multiple criteria decision making es_ES
dc.subject Score functions es_ES
dc.subject.classification ECONOMIA FINANCIERA Y CONTABILIDAD es_ES
dc.title Non-linear Neutrosophic Numbers and Its Application to Multiple Criteria Performance Assessment es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s40815-022-01295-y es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Politécnica Superior de Alcoy - Escola Politècnica Superior d'Alcoi es_ES
dc.description.bibliographicCitation Reig-Mullor, J.; Salas-Molina, F. (2022). Non-linear Neutrosophic Numbers and Its Application to Multiple Criteria Performance Assessment. International Journal of Fuzzy Systems. 24(6):2889-2904. https://doi.org/10.1007/s40815-022-01295-y es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1007/s40815-022-01295-y es_ES
dc.description.upvformatpinicio 2889 es_ES
dc.description.upvformatpfin 2904 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 24 es_ES
dc.description.issue 6 es_ES
dc.relation.pasarela S\467608 es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.description.references Zadeh, L.A.: Information and control. Fuzzy Sets 8(3), 338–353 (1965) es_ES
dc.description.references Atanassov, K.: Intuitionistic fuzzy sets. Fuzzy Sets Syst. 20, 87–96 (1986) es_ES
dc.description.references Atanassov, K.: Intuitionistic Fuzzy Sets, vol. 283. Springer, Berlin (1999) es_ES
dc.description.references Smarandache, F.: A Unifying Field in Logics: Neutrsophic Logic. Neutrosophy, Neutrosophic Set, Neutrosophic Probability. American Research Press, Santa Fe (2005) es_ES
dc.description.references Wang, H., Smarandache, F., Zhang, Y., Sunderraman, R.: Single valued neutrosophic sets. Multispace Multistruct. 4, 410–413 (2010) es_ES
dc.description.references Ye, J.: Trapezoidal neutrosophic set and its application to multiple attribute decision-making. Neural Comput. Appl. 26(5), 1157–1166 (2015) es_ES
dc.description.references Khatter, K.: Neutrosophic linear programming using possibilistic mean. Soft. Comput. 24(22), 16,847-16,867 (2020) es_ES
dc.description.references Nafei, A., Javadpour, A., Nasseri, H., Yuan, W.: Optimized score function and its application in group multiattribute decision making based on fuzzy neutrosophic sets. Int. J. Intell. Syst. 2021, 1–22 (2021) es_ES
dc.description.references Ahmad, F.: Interactive neutrosophic optimization technique for multiobjective programming problems: an application to pharmaceutical supply chain management. Ann. Oper. Res. 2021, 1–35 (2021) es_ES
dc.description.references Luo, S., Pedrycz, W., Xing, L.: Pricing of satellite image data products: neutrosophic fuzzy pricing approaches under different game scenarios. Appl. Soft Comput. 102(107), 106 (2021) es_ES
dc.description.references Hussain, S.S., Rosyida, I., Rashmanlou, H., Mofidnakhaei, F.: Interval intuitionistic neutrosophic sets with its applications to interval intuitionistic neutrosophic graphs and climatic analysis. Comput. Appl. Math. 40(4), 1–20 (2021) es_ES
dc.description.references Deveci, M., Erdogan, N., Cali, U., Stekli, J., Zhong, S.: Type-2 neutrosophic number based multi-attributive border approximation area comparison (MABAC) approach for offshore wind farm site selection in usa. Eng. Appl. Artif. Intell. 103(104), 311 (2021) es_ES
dc.description.references Haque, T.S., Chakraborty, A., Mondal, S.P., Alam, S.: New exponential operational law for measuring pollution attributes in mega-cities based on MCGDM problem with trapezoidal neutrosophic data. J. Ambient Intell. Hum. Comput. 2021, 1–18 (2021) es_ES
dc.description.references Yazdani, M., Torkayesh, A.E., Stević, Ž, Chatterjee, P., Ahari, S.A., Hernandez, V.D.: An interval valued neutrosophic decision-making structure for sustainable supplier selection. Expert Syst. Appl. 183, 115354 (2021) es_ES
dc.description.references Wei, G., Wu, J., Guo, Y., Wang, J., Wei, C.: An extended copras model for multiple attribute group decision making based on single-valued neutrosophic 2-tuple linguistic environment. Technol. Econ. Dev. Econ. 27(2), 353–368 (2021) es_ES
dc.description.references Kilic, H.S., Yurdaer, P., Aglan, C.: A leanness assessment methodology based on neutrosophic dematel. J. Manuf. Syst. 59, 320–344 (2021) es_ES
dc.description.references Huang, S.W., Liou, J.J., Chuang, H.H., Ma, J.C., Lin, C.S., Tzeng, G.H.: Exploring the key factors for preventing public health crises under incomplete information. Int. J. Fuzzy Syst. 2021, 1–22 (2021) es_ES
dc.description.references Mondal, S.P., Mandal, M., Bhattacharya, D.: Non-linear interval-valued fuzzy numbers and their application in difference equations. Granul. Comput. 3(2), 177–189 (2018) es_ES
dc.description.references Chakraborty, A., Mondal, S.P., Mahata, A., Alam, S.: Different linear and non-linear form of trapezoidal neutrosophic numbers, de-neutrosophication techniques and its application in time-cost optimization technique, sequencing problem. RAIRO-Oper. Res. 55, S97–S118 (2021) es_ES
dc.description.references Lotfi, R., Kargar, B., Gharehbaghi, A., Weber, G.W.: Viable medical waste chain network design by considering risk and robustness. Environ. Sci. Pollut. Res. 2021, 1–16 (2021) es_ES
dc.description.references Lotfi, R., Kargar, B., Hoseini, S.H., Nazari, S., Safavi, S., Weber, G.W.: Resilience and sustainable supply chain network design by considering renewable energy. Int. J. Energy Res. 45(12), 17,749-17,766 (2021b) es_ES
dc.description.references Lotfi, R., Mardani, N., Weber, G.W.: Robust bi-level programming for renewable energy location. Int. J. Energy Res. 45(5), 7521–7534 (2021c) es_ES
dc.description.references Lotfi, R., Yadegari, Z., Hosseini, S.H., Khameneh, A.H., Tirkolaee, E.B., Weber, G.W.: A robust time-cost-quality-energy-environment trade-off with resource-constrained in project management: a case study for a bridge construction project. J. Ind. Manag. Optim. 18, 375 (2022) es_ES
dc.description.references Salas-Molina, F., Rodriguez-Aguilar, J.A., Pla-Santamaria, D.: A stochastic goal programming model to derive stable cash management policies. J. Glob. Optim. 76(2), 333–346 (2020) es_ES
dc.description.references Ballestero, E., Romero, C.: Multiple Criteria Decision Making and Its Applications to Economic Problems. Kluwer Academic Publishers, Dordrecht (1998) es_ES
dc.description.references Salas-Molina, F., Pla-Santamaria, D., Rodríguez-Aguilar, J.A.: Empowering cash managers through compromise programming. In: Masri, H., Perez-Gladish, B., Zopounidis, C. (eds.) Financial Decision Aid Using Multiple Criteria, pp. 149–173. Springer, New York (2018) es_ES
dc.description.references Junaid, M., Xue, Y., Syed, M.W., Li, J.Z., Ziaullah, M.: A neutrosophic AHP and TOPSIS framework for supply chain risk assessment in automotive industry of Pakistan. Sustainability 12(1), 154 (2020) es_ES
dc.description.references Tey, D.J.Y., Gan, Y.F., Selvachandran, G., Quek, S.G., Smarandache, F., Abdel-Basset, M., Long, H.V., et al.: A novel neutrosophic data analytic hierarchy process for multi-criteria decision making method: a case study in Kuala Lumpur stock exchange. IEEE Access 7, 53,687-53,697 (2019) es_ES
dc.description.references Carlsson, C., Fullér, R.: On possibilistic mean value and variance of fuzzy numbers. Fuzzy Sets Syst. 122(2), 315–326 (2001) es_ES
dc.description.references Wan, S.P., Li, D.F., Rui, Z.F.: Possibility mean, variance and covariance of triangular intuitionistic fuzzy numbers. J. Intell. Fuzzy Syst. 24(4), 847–858 (2013) es_ES
dc.description.references Li, X., Qin, Z., Kar, S.: Mean-variance-skewness model for portfolio selection with fuzzy returns. Eur. J. Oper. Res. 202(1), 239–247 (2010) es_ES
dc.description.references Gu, Q., Xuan, Z.: A new approach for ranking fuzzy numbers based on possibility theory. J. Comput. Appl. Math. 309, 674–682 (2017) es_ES
dc.description.references Abdel-Baset, M., Chang, V., Gamal, A., Smarandache, F.: An integrated neutrosophic ANP and VIKOR method for achieving sustainable supplier selection: a case study in importing field. Comput. Ind. 106, 94–110 (2019) es_ES
dc.description.references Saaty, T.L.: The Analytic Hierarchy Process. Mc Graw-Hill, New York (1980) es_ES
dc.description.references Yoon, K.P., Hwang, C.L.: Multiple Attribute Decision Making: An Introduction. Sage publications, Thousand Oaks (1995) es_ES
dc.description.references González-Pachón, J., Romero, C.: Bentham, Marx and Rawls ethical principles: in search for a compromise. Omega 62, 47–51 (2016) es_ES
dc.description.references Romero, C.: A note on distributive equity and social efficiency. J. Agric. Econ. 52(2), 110–112 (2001) es_ES
dc.description.references Ballestero, E.: Compromise programming: a utility-based linear-quadratic composite metric from the trade-off between achievement and balanced (non-corner) solutions. Eur. J. Oper. Res. 182(3), 1369–1382 (2007) es_ES
dc.description.references Salas-Molina, F., Rodriguez-Aguilar, J.A., Pla-Santamaria, D.: Characterizing compromise solutions for investors with uncertain risk preferences. Oper. Res. Int. J. 19(3), 661–677 (2019) es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem