- -

Predicting the Uniaxial Compressive Strength of a Limestone Exposed to High Temperatures by Point Load and Leeb Rebound Hardness Testing

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Predicting the Uniaxial Compressive Strength of a Limestone Exposed to High Temperatures by Point Load and Leeb Rebound Hardness Testing

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Garrido De La Torre, Mª Elvira es_ES
dc.contributor.author Petnga, Ferry B. es_ES
dc.contributor.author Martínez Ibáñez, Víctor es_ES
dc.contributor.author Serón Gáñez, José Bernardo es_ES
dc.contributor.author Hidalgo Signes, Carlos es_ES
dc.contributor.author Tomás, Roberto es_ES
dc.date.accessioned 2023-09-21T18:05:57Z
dc.date.available 2023-09-21T18:05:57Z
dc.date.issued 2021-01 es_ES
dc.identifier.issn 0723-2632 es_ES
dc.identifier.uri http://hdl.handle.net/10251/196923
dc.description.abstract [EN] The effect of exposure to high temperature on rock strength is a topic of interest in many engineering fields. In general, rock strength is known to decrease as temperature increases. The most common test used to evaluate the rock strength is the uniaxial compressive strength test (UCS). It can only be carried out in laboratory and presents some limitations in terms of the number, type and preparation of the samples. Such constrains are more evident in case of rocks from historical monuments affected by a fire, where the availability of samples is limited. There are alternatives for an indirect determination of UCS, such as the point load test (PLT), or non-destructive tests such as the Schmidt's hammer, that can also be performed in situ. The aims of this research are: (i) measuring the effect of high temperatures and cooling methods on the strength and hardness of a limestone named Pedra de Borriol widely used in several historic buildings on the E of Spain, and (ii) studying the possibility of indirectly obtaining UCS by means of PLT and Leeb hardness tests (LHT), using Equotip type D. Limestone samples were heated to 105 (standard conditions), 200, 300, 400, 500, 600, 700, 800 and 900 oC and cooled slowly (in air) and quickly (immersed in water). After that, UCS, PLT and LHT tests were performed to evaluate the changes as temperature increases. Results show decreases over 90% in UCS, of between 50 and 70% in PLT index and smaller than 60% in LHT index. Insignificant differences between cooling methods were observed, although slowly cooled samples provide slightly higher values than quickly cooled ones. The results indicate that LHT can be used to indirectly estimate UCS, providing an acceptable prediction. Research on correlating strength parameters in rocks after thermally treated is still scarce. This research novelty provides correlations to predict UCS in historic buildings if affected by a fire, from PLT and non-destructive methods such as LHT whose determination is quicker and easier. es_ES
dc.description.sponsorship Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature. es_ES
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof Rock Mechanics and Rock Engineering es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Limestone es_ES
dc.subject Strength es_ES
dc.subject Hardness es_ES
dc.subject High temperatures es_ES
dc.subject Uniaxial compression strength es_ES
dc.subject Point load test es_ES
dc.subject Hardness Leeb-D value es_ES
dc.subject Historic building es_ES
dc.subject.classification INGENIERIA DEL TERRENO es_ES
dc.title Predicting the Uniaxial Compressive Strength of a Limestone Exposed to High Temperatures by Point Load and Leeb Rebound Hardness Testing es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s00603-021-02647-0 es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros de Caminos, Canales y Puertos - Escola Tècnica Superior d'Enginyers de Camins, Canals i Ports es_ES
dc.description.bibliographicCitation Garrido De La Torre, ME.; Petnga, FB.; Martínez Ibáñez, V.; Serón Gáñez, JB.; Hidalgo Signes, C.; Tomás, R. (2021). Predicting the Uniaxial Compressive Strength of a Limestone Exposed to High Temperatures by Point Load and Leeb Rebound Hardness Testing. Rock Mechanics and Rock Engineering. 55(1):1-17. https://doi.org/10.1007/s00603-021-02647-0 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1007/s00603-021-02647-0 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 17 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 55 es_ES
dc.description.issue 1 es_ES
dc.relation.pasarela S\450754 es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.description.references Aoki H, Matsukura Y (2008) Estimating the unconfined compressive strength of intact rocks from Equotip hardness. Bull Eng Geol Environ 67(1):23–29. https://doi.org/10.1007/s10064-007-0116-z es_ES
dc.description.references Armaghani DJ, Tonnizam Mohamad E, Momeni E, Monjezi M, Sundaram Narayanasamy M (2016) Prediction of the strength and elasticity modulus of granite through an expert artificial neural network. Arab J Geosci 9(1):48. https://doi.org/10.1007/s12517-015-2057-3 es_ES
dc.description.references Aydin A (2009) ISRM Suggested method for determination of the Schmidt hammer rebound hardness: revised version. Int J Rock Mech Min Sci 46(3):627–634. https://doi.org/10.1016/j.ijrmms.2008.01.020 es_ES
dc.description.references Aydin G, Karakurt I, Aydiner K (2013) Prediction of the cut depth of granitic rocks machined by abrasive waterjet (AWJ). Rock Mech Rock Eng 46(5):1223–1235. https://doi.org/10.1007/s00603-012-0307-1 es_ES
dc.description.references Barton N (1979) Suggested methods for the quantitative description of discontinuities in rock masses. Int J Rock Mech Min Sci Geomech Abstr 16(2):22. https://doi.org/10.1016/0148-9062(79)91476-1 es_ES
dc.description.references Barton N, Choubey V (1977) The shear strength of rock joints in theory and practice. Rock Mech 10(1):1–54. https://doi.org/10.1007/BF01261801 es_ES
dc.description.references Basu A, Aydin A (2006) Predicting uniaxial compressive strength by point load test: significance of cone penetration. Rock Mech Rock Eng 39:483–490. https://doi.org/10.1007/s00603-006-0082-y es_ES
dc.description.references Becattini V, Motmans T, Zappone A, Madonna C, Haselbacher A, Steinfeld A (2017) Experimental investigation of the thermal and mechanical stability of rocks for high-temperature thermal-energy storage. Appl Energy 203:373–389. https://doi.org/10.1016/j.apenergy.2017.06.025 es_ES
dc.description.references Bieniawski ZT (1974) Estimating the strength of rock materials. J S Afr Inst Min Metall 74:312–320 es_ES
dc.description.references Bieniawski ZT (1975) The point-load test in geotechnical practice. Eng Geol 9(1):1–11 es_ES
dc.description.references Bieniawski ZT, Bernede MJ (1979) ISMR Suggested methods for determining the uniaxial compressive strength and deformability of rock materials: part 1. Int J Rock Mech Min Sci Geomech 16(2):138–140. https://doi.org/10.1016/0148-9062(79)91451-7 es_ES
dc.description.references Broch E, Franklin JA (1972) The point-load strength test. Int J Rock Mech Min Sci Geomech Abstr 9(6):669-676 es_ES
dc.description.references Brotóns V, Tomás R, Ivorra S, Alarcón JC (2013) Temperature influence on the physical and mechanical properties of a porous rock: San Julian’s calcarenite. Eng Geol 167:117–127. https://doi.org/10.1016/j.enggeo.2013.10.012 es_ES
dc.description.references Brotóns V, Tomás R, Ivorra S (2014) A calcarenite exposed to true fire conditions: A methodological proposal. In: Rock Engineering and rock mechanics: structures in and on rock masses—Proceedings of EUROCK 2014, ISRM European Regional Symposium, (May) es_ES
dc.description.references Chakrabarti B, Yates T, Lewry A (1996) Effect of fire damage on natural stonework in buildings. Constr Build Mater 10(7):539–544. https://doi.org/10.1016/0950-0618(95)00076-3 es_ES
dc.description.references Chen YL, Ni J, Shao W, Azzam R (2012) Experimental study on the influence of temperature on the mechanical properties of granite under uni-axial compression and fatigue loading. Int J Rock Mech Min Sci 56:62–66. https://doi.org/10.1016/j.ijrmms.2012.07.026 es_ES
dc.description.references Corkum AG, Asiri Y, El Naggar H, Kinakin D (2018) The leeb hardness test for rock: an updated methodology and UCS correlation. Rock Mech Rock Eng 51(3):665–675. https://doi.org/10.1007/s00603-017-1372-2 es_ES
dc.description.references David C, Menéndez B, Darot M (1999) Influence of stress-induced and thermal cracking on physical properties and microstructure of La Peyratte granite. Int J Rock Mech Min Sci 36:433–448 es_ES
dc.description.references Deere DU, Miller RP (1965) Engineering classification and index properties for intact rock. Air Force weapons laboratory, Kirtland Air Base. New Mexico, Technical Report AFWL-TR-65-115. es_ES
dc.description.references Diamantis K, Gartzos E, Migiros G (2009) Study on uniaxial compressive strength, point load strength index, dynamic and physical properties of serpentinites from Central Greece: Test results and empirical relations. Eng Geol 108(3–4):199–207. https://doi.org/10.1016/j.enggeo.2009.07.002 es_ES
dc.description.references Elhakim AF (2015) The use of point load test for Dubai weak calcareous sandstones. J Rock Mech Geotech Eng 7(4):452–457. https://doi.org/10.1016/j.jrmge.2015.06.003 es_ES
dc.description.references Ferrero AM, Marini P (2001) Experimental studies on the mechanical behaviour of two thermal cracked marbles. Rock Mech Rock Eng 34(1):57–66. https://doi.org/10.1007/s006030170026 es_ES
dc.description.references Franklin J (1979) ISRM Suggested methods for determining water content, porosity, density absorption and related properties and swelling and slake-durability index properties. Int J Rock Mech Min Sci 16(2):143–151 es_ES
dc.description.references Galvan M, Preciado J, Seron JB (2014) Correlation between the point load index, Is(50), and the resistance to unconfined compression in limestone from the comunidad valenciana, Spain. Acta Geotech Slov 11(2):35–45 es_ES
dc.description.references Garrido ME, Martínez-Ibáñez V, Hidalgo C, Biase SD, Tomás R (2020) Effects of thermal gradient on limestone exposed to high temperatures. In: Li JMCC, Ødegaard H, Høien AH (eds) ISRM International Symposium Eurock 2020. International Society for Rock Mechanics and Rock Engineering Norwegian Group for Rock Mechanics, Trondheim es_ES
dc.description.references Gokceoglu C, Zorlu K (2004) A fuzzy model to predict the uniaxial compressive strength and the modulus of elasticity of a problematic rock. Eng Appl Artif Intell 17(1):61–72. https://doi.org/10.1016/j.engappai.2003.11.006 es_ES
dc.description.references Gomez-Heras M, Benavente D, Pla C, Martinez-Martinez J, Fort R, Brotons V (2020) Ultrasonic pulse velocity as a way of improving uniaxial compressive strength estimations from Leeb hardness measurements. Constr Build Mater 261:119996. https://doi.org/10.1016/j.conbuildmat.2020.119996 es_ES
dc.description.references González-Gómez WS, Quintana P, May-Pat A, Avilés F, May-Crespo J, Alvarado-Gil JJ (2015) Thermal effects on the physical properties of limestones from the Yucatan Peninsula. Int J Rock Mech Min Sci 75:182–189. https://doi.org/10.1016/j.ijrmms.2014.12.010 es_ES
dc.description.references Griffiths L, Heap MJ, Baud P, Schmittbuhl J (2017) Quantification of microcrack characteristics and implications for stiffness and strength of granite. Int J Rock Mech Min Sci 100(October):138–150. https://doi.org/10.1016/j.ijrmms.2017.10.013 es_ES
dc.description.references Hassani FP, Scoble MJ, Whittaker BN (1980) Application of the point load index test to strength determination of rock and proposals for a new size-correction chart. In: The 21st US symposium on rock mechanics (USRMS). OnePetro, vol 1. pp 543–564 es_ES
dc.description.references Huang YH, Yang SQ, Tian WL, Zhao J, Ma D, Zhang CS (2017) Physical and mechanical behavior of granite containing pre-existing holes after high temperature treatment. Arch Civ Mech Eng 17(4):912–925. https://doi.org/10.1016/j.acme.2017.03.007 es_ES
dc.description.references Idris MA (2018) Effects of elevated temperatures on physical and mechanical properties of carbonate rocks in south-southern Nigeria. Min Miner Depos 12(4):20–27. https://doi.org/10.15407/mining12.01.020 es_ES
dc.description.references Ioannou I, Aspinall W, Rush D, Bisby L, Rossetto T (2017) Expert judgment-based fragility assessment of reinforced concrete buildings exposed to fire. Reliab Eng Syst Saf 167(May):105–127. https://doi.org/10.1016/j.ress.2017.05.011 es_ES
dc.description.references Jansen DP, Carlson SR, Young RP, Hutchins DA (1993) Ultrasonic imaging and acoustic emission monitoring of thermally induced microcracks in Lac du Bonnet granite. JGR Solid Earth 98(12):22231–22243. https://doi.org/10.1029/93JB01816 es_ES
dc.description.references Kahraman S, Gunaydin O, Fener M (2005) The effect of porosity on the relation between uniaxial compressive strength and point load index. Int J Rock Mech Min Sci 42(4):584–589. https://doi.org/10.1016/j.ijrmms.2005.02.004 es_ES
dc.description.references Karakurt I, Aydin G, Aydiner K (2012) A study on the prediction of kerf angle in abrasive waterjet machining of rocks. Proc Inst Mech Eng Part B J Eng Manuf 226(9):1489–1499. https://doi.org/10.1177/0954405412454395 es_ES
dc.description.references Keshavarz M, Pellet FL, Loret B (2010) Damage and changes in mechanical properties of a gabbro thermally loaded up to 1,000°C. Pure Appl Geophys 167(12):1511–1523. https://doi.org/10.1007/s00024-010-0130-0 es_ES
dc.description.references Kohno M, Maeda H (2012) Relationship between point load strength index and uniaxial compressive strength of hydrothermally altered soft rocks. Int J Rock Mech Min Sci 50:147–157 es_ES
dc.description.references Kompatscher M (2004) Equotip-rebound hardness testing after D. Leeb. In: Proceedings, conference on hardness measurements theory and application in laboratories and industries, vol 1. pp 1–12 es_ES
dc.description.references Kumari WGP, Ranjith PG, Perera MSA, Chen BK, Abdulagatov IM (2017) Temperature-dependent mechanical behaviour of Australian Strathbogie granite with different cooling treatments. Eng Geol. https://doi.org/10.1016/j.enggeo.2017.09.012 es_ES
dc.description.references Lewis CD (1982) Industrial and business forecasting methods: a practical guide to exponential smoothing and curve fitting. Butterworth-Heinemann es_ES
dc.description.references Lion M, Skoczylas F, Ledésert B (2005) Effects of heating on the hydraulic and poroelastic properties of bourgogne limestone. Int J Rock Mech Min Sci 42(4):508–520. https://doi.org/10.1016/j.ijrmms.2005.01.005 es_ES
dc.description.references Liu S, Xu J (2014) Mechanical properties of Qinling biotite granite after high temperature treatment. Int J Rock Mech Min Sci 71:188–193. https://doi.org/10.1016/j.ijrmms.2014.07.008 es_ES
dc.description.references Mao XB, Zhang L, Li TZ, Liu HS (2009) Properties of failure mode and thermal damage for limestone at high temperature. Min Sci Technol 19(3):290–294. https://doi.org/10.1016/S1674-5264(09)60054-5 es_ES
dc.description.references Martínez-Ibáñez V, Benavente D, Hidalgo Signes C, Tomás R, Garrido ME (2020a) Temperature—induced explosive behaviour and thermo—chemical damage on pyrite—bearing limestones : causes and mechanisms. Rock Mech Rock Eng. https://doi.org/10.1007/s00603-020-02278-x es_ES
dc.description.references Martínez-Ibáñez V, Garrido ME, Hidalgo Signes C, Tomás R (2020b) Study of explosive behaviour at high temperatures on limestones from a road tunnel in Spain. In: Li JMCC, Ødegaard H, Høien AH (eds) ISRM International Symposium Eurock 2020. International Society for Rock Mechanics and Rock Engineering Norwegian Group for Rock Mechanics, Trondheim es_ES
dc.description.references Martínez-Ibáñez V, Garrido ME, Hidalgo-Signes C, Basco A, Miranda T, Tomás R (2021a) Thermal effects on the drilling performance of a limestone: relationships with physical and mechanical properties. Appl Sci. https://doi.org/10.3390/app11073286 es_ES
dc.description.references Martínez-Ibáñez V, Garrido ME, Hidalgo Signes C, Tomás R (2021b) Micro and macro-structural effects of high temperatures in Prada limestone: Key factors for future fire-intervention protocols in Tres Ponts Tunnel (Spain). Construct Build Mater 286:122960. https://doi.org/10.1016/j.conbuildmat.2021.122960 es_ES
dc.description.references Meng QB, Wang CK, Liu JF, Zhang MW, Lu MM, Wu Y (2020) Physical and micro-structural characteristics of limestone after high temperature exposure. Bull Eng Geol Env 79(3):1259–1274. https://doi.org/10.1007/s10064-019-01620-0 es_ES
dc.description.references Meulenkamp F, Alvarez Grima M (1999) Application of neural networks for the prediction of the unconfined compressive strength (UCS) from Equotip hardness. Int J Rock Mech Min Sci 36(1):29–39. https://doi.org/10.1016/S0148-9062(98)00173-9 es_ES
dc.description.references O’Rourke JE (1989) Rock index properties for geoengineering in underground development. Min Eng (littleton, Colorado) 41(2):106–109 es_ES
dc.description.references Ovejero M, Queralt I, De la Fuente C (2005) Petrography and hydric characterization of the quarry material of the varieties of Borriol Stone (Castellon). Materiales de Construccion, 55 no 278(c), 41–54. Retrieved from http://materconstrucc.revistas.csic.es. Accessed Nov 2016 es_ES
dc.description.references Ozguven A, Ozcelik Y (2014) Effects of high temperature on physico-mechanical properties of Turkish natural building stones. Eng Geol 183:127–136. https://doi.org/10.1016/j.enggeo.2014.10.006 es_ES
dc.description.references Pomiès MP, Menu M, Vignaud C (1999) Tem observations of goethite dehydration: application to archaeological samples. J Eur Ceram Soc 19(8):1605–1614. https://doi.org/10.1016/s0955-2219(98)00254-4 es_ES
dc.description.references Rabat A, Cano M, Tomás R, Tamayo E, Alejano LR (2020) Evaluation of strength and deformability of soft sedimentary rocks in dry and saturated conditions through needle penetration and point load tests: a comparative study. Rock Mech Rock Eng 53(6):2707–2726. https://doi.org/10.1007/s00603-020-02067-6 es_ES
dc.description.references Rosengren KJ, Jaenger JC (1968) The mechanical properties of an interlocked low-porosity aggregate. Geotechnique 18:317–326 es_ES
dc.description.references Sabatakakis N, Koukis G, Tsiambaos G, Papanakli S (2008) Index properties and strength variation controlled by microstructure for sedimentary rocks. Eng Geol 97(1–2):80–90. https://doi.org/10.1016/j.enggeo.2007.12.004 es_ES
dc.description.references Şahin M, Ulusay R, Karakul H (2020) Point load strength index of half-cut core specimens and correlation with uniaxial compressive strength. Rock Mech Rock Eng 53(8):3745–3760. https://doi.org/10.1007/s00603-020-02137-9 es_ES
dc.description.references Saroglou H, Tsiambaos G (2007) Classification of anisotropic rocks. In: 11th ISRM congress. OnePetro, vol 1. pp 191–196 es_ES
dc.description.references Singh VK, Singh DP (1993) Correlation between point load index and compressive strength for quartzite rocks. Geo tech Geol Eng 11:269–272 es_ES
dc.description.references Singh VK, Singh D, Singh TN (2001) Prediction of strength properties of some schistose rocks from petrographic properties using artificial neural networks. Int J Rock Mech Min Sci 38(2):269–284. https://doi.org/10.1016/S1365-1609(00)00078-2 es_ES
dc.description.references Singh R, Umrao RK, Ahmad M, Ansari MK, Sharma LK, Singh TN (2017) Prediction of geomechanical parameters using soft computing and multiple regression approach. Measurement 99:108–119. https://doi.org/10.1016/j.measurement.2016.12.023 es_ES
dc.description.references Sirdesai NN, Singh TN, Ranjith PG (2017) Thermal alterations in the poro-mechanical characteristic of an Indian sandstone—a comparative study. Eng Geol 226:208–220. https://doi.org/10.1016/j.enggeo.2017.06.010 es_ES
dc.description.references Sonmez H, Tuncay E, Gokceoglu C (2004) Models to predict the uniaxial compressive strength and the modulus of elasticity for Ankara Agglomerate. Int J Rock Mech Min Sci 41(5):717–729. https://doi.org/10.1016/j.ijrmms.2004.01.011 es_ES
dc.description.references Sonmez H, Gokceoglu C, Medley EW, Tuncay E, Nefeslioglu HA (2006) Estimating the uniaxial compressive strength of a volcanic bimrock. Int J Rock Mech Min Sci 43(4):554–561. https://doi.org/10.1016/j.ijrmms.2005.09.014 es_ES
dc.description.references Sulukcu S, Ulusay R (2001) Evaluation of the block punch index test with particular reference to the size effect, failure mechanism and its effectiveness in predicting rock strength. Int J Rock Mech Min Sci 38:1091–1111 es_ES
dc.description.references Thuro K, Plinninger RJ, Zah S, Schutz S (2001) Scale effects in rock strength properties. Part 2: point load test and point load strength index. In: Särkkä P, Eloranta P (eds) Rock mechanics-a challenge for society, p 881. Proceedings of the ISRM regional symposium Eurock, pp 175–180 es_ES
dc.description.references Tomás R, Cano M, Pulgarín LF, Brotóns V, Benavente D, Miranda T, Vasconcelos G (2021) Thermal effect of high temperatures on the physical and mechanical properties of a granite used in UNESCO World Heritage Sites in North Portugal. J Build Eng 43:1–16. https://doi.org/10.1016/j.jobe.2021.102823 es_ES
dc.description.references Török A, Hajpál M (2005) Effect of temperature changes on the mineralogy and physical properties of sandstones a laboratory study. Restor Build Monum Bauinstandsetzen Und Baudenkmalpflege 11(4):1–8 es_ES
dc.description.references Tugrul A, Zarif IH (1999) Correlation of mineralogical and textural characteristics with engineering properties of selected granitic rocks from Turkey. Eng Geol 51:303–317 es_ES
dc.description.references Vagnon F, Colombero C, Colombo F, Comina C, Ferrero AM, Mandrone G, Vinciguerra SC (2019) Effects of thermal treatment on physical and mechanical properties of Valdieri Marble-NW Italy. Int J Rock Mech Min Sci 116:75–86. https://doi.org/10.1016/j.ijrmms.2019.03.006 es_ES
dc.description.references Vagnon F, Colombero C, Comina C, Ferrero AM, Mandrone G, Missagia R, Vinciguerra SC (2021) Relating physical properties to temperature-induced damage in carbonate rocks. Geotech Lett 11(2):1–11. https://doi.org/10.1680/jgele.20.00122 es_ES
dc.description.references Verwaal W, Mulder A (1993) Estimating rock strength with the Equotip hardness tester. Int J Rock Mech Min Sci Geomech Abstr 30(6):659–662 es_ES
dc.description.references Viles H, Goudie A, Grab S, Lalley J (2011) The use of the Schmidt Hammer and Equotip for rock hardness assessment in geomorphology and heritage science: a comparative analysis. Earth Surf Proc Land 36(3):320–333. https://doi.org/10.1002/esp.2040 es_ES
dc.description.references Villarraga CJ, Gasc-Barbier M, Vaunat J, Darrozes J (2018) The effect of thermal cycles on limestone mechanical degradation. Int J Rock Mech Min Sci 109:115–123. https://doi.org/10.1016/j.ijrmms.2018.06.017 es_ES
dc.description.references Wang F, Frühwirt T, Konietzky H, Zhu Q (2019) Thermo-mechanical behaviour of granite during high-speed heating. Eng Geol 260:105258. https://doi.org/10.1016/j.enggeo.2019.105258 es_ES
dc.description.references Wong LNY, Zhang Y, Wu Z (2020) Rock strengthening or weakening upon heating in the mild temperature range? Eng Geol 272:105619. https://doi.org/10.1016/j.enggeo.2020.105619 es_ES
dc.description.references Wu G, Wang Y, Swift G, Chen J (2013) Laboratory investigation of the effects of temperature on the mechanical properties of sandstone. Geotech Geol Eng 31(2):809–816. https://doi.org/10.1007/s10706-013-9614-x es_ES
dc.description.references Yang J, Fu LY, Zhang W, Wang Z (2019) Mechanical property and thermal damage factor of limestone at high temperature. Int J Rock Mech Min Sci. https://doi.org/10.1016/j.ijrmms.2019.03.012 es_ES
dc.description.references Yesiloglu-Gultekin N, Gokceoglu C, Sezer EA (2013) Prediction of uniaxial compressive strength of granitic rocks by various nonlinear tools and comparison of their performances. Int J Rock Mech Min Sci 62:113–122. https://doi.org/10.1016/j.ijrmms.2013.05.005 es_ES
dc.description.references Yilmaz NG (2013) The influence of testing procedures on uniaxial compressive strength prediction of carbonate rocks from Equotip hardness tester (EHT) and proposal of a new testing methodology: hybrid dynamic hardness (HDH). Rock Mech Rock Eng. https://doi.org/10.1007/s00603-012-0261-y es_ES
dc.description.references Ylmaz I, Sendr H (2002) Correlation of Schmidt hardness with unconfined compressive strength and Young’s modulus in gypsum from Sivas (Turkey). Eng Geol 66(3–4):211–219. https://doi.org/10.1016/S0013-7952(02)00041-8 es_ES
dc.description.references Yüksek S (2019) Mechanical properties of some building stones from volcanic deposits of mount Erciyes (Turkey). Mater Constr 69:187. https://doi.org/10.3989/mc.2019.04618 es_ES
dc.description.references Zhang W, Lv C (2020) Effects of mineral content on limestone properties with exposure to different temperatures. J Pet Sci Eng 188:106941. https://doi.org/10.1016/j.petrol.2020.106941 es_ES
dc.description.references Zhang LY, Mao XB, Lu AH (2009) Experimental study on the mechanical properties of rocks at high temperature. Sci China Ser E Technol Sci 52(3):641–646. https://doi.org/10.1007/s11431-009-0063-y es_ES
dc.description.references Zhang W, Sun Q, Hao S, Geng J, Lv C (2016) Experimental study on the variation of physical and mechanical properties of rock after high temperature treatment. Appl Therm Eng 98:1297–1304. https://doi.org/10.1016/j.applthermaleng.2016.01.010 es_ES
dc.description.references Zorlu K, Gokceoglu C, Ocakoglu F, Nefeslioglu HA, Acikalin S (2008) Prediction of uniaxial compressive strength of sandstones using petrography-based models. Eng Geol 96(3–4):141–158. https://doi.org/10.1016/j.enggeo.2007.10.009 es_ES
dc.subject.ods 09.- Desarrollar infraestructuras resilientes, promover la industrialización inclusiva y sostenible, y fomentar la innovación es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem