- -

Physicochemical Characterization of Texture-Modified Pumpkin by Vacuum Enzyme Impregnation: Textural, Chemical, and Image Analysis

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Physicochemical Characterization of Texture-Modified Pumpkin by Vacuum Enzyme Impregnation: Textural, Chemical, and Image Analysis

Mostrar el registro completo del ítem

Hernández, S.; Gallego Ibáñez, M.; Verdú Amat, S.; Barat Baviera, JM.; Talens Oliag, P.; Grau Meló, R. (2023). Physicochemical Characterization of Texture-Modified Pumpkin by Vacuum Enzyme Impregnation: Textural, Chemical, and Image Analysis. Food and Bioprocess Technology. 16(1):122-134. https://doi.org/10.1007/s11947-022-02925-x

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/197772

Ficheros en el ítem

Metadatos del ítem

Título: Physicochemical Characterization of Texture-Modified Pumpkin by Vacuum Enzyme Impregnation: Textural, Chemical, and Image Analysis
Autor: Hernández, Sergio Gallego Ibáñez, Marta VERDÚ AMAT, SAMUEL Barat Baviera, José Manuel Talens Oliag, Pau Grau Meló, Raúl
Entidad UPV: Universitat Politècnica de València. Instituto Universitario de Ingeniería de Alimentos para el Desarrollo - Institut Universitari d'Enginyeria d'Aliments per al Desenvolupament
Universitat Politècnica de València. Departamento de Tecnología de Alimentos - Departament de Tecnologia d'Aliments
Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería Agronómica y del Medio Natural - Escola Tècnica Superior d'Enginyeria Agronòmica i del Medi Natural
Fecha difusión:
Resumen:
[EN] Texture-modified pumpkin was developed by using vacuum enzyme impregnation to soften texture to tolerable limits for the elderly population with swallowing and chewing difficulties. The impregnation process and ...[+]
Palabras clave: Cucurbita moschata , Vacuum impregnation , Elderly population , Texture-modified foods , Antioxidant capacity , Sugars
Derechos de uso: Reconocimiento (by)
Fuente:
Food and Bioprocess Technology. (issn: 1935-5130 )
DOI: 10.1007/s11947-022-02925-x
Editorial:
Springer-Verlag
Versión del editor: https://doi.org/10.1007/s11947-022-02925-x
Código del Proyecto:
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-098842-B-I00/ES/AVANCES EN EL DISEÑO DE ALIMENTOS CON TEXTURA MODIFICADA/
info:eu-repo/grantAgreement///APOSTD%2F2020%2F264//CONTRATO POSDOCTORAL GVA-RIBES LLOP. PROYECTO: ESTUDIO DEL PROCESADO ORAL DE DISTINTOS ALIMENTOS PARA GRUPOS CON DISFUNCIONES/
info:eu-repo/grantAgreement/UPV//PAID-10-19//Mejora de prestaciones del páncreas artificial ante ingestas y ejercicio mediante observadores de perturbaciones y técnicas de compensación de retardos/
Agradecimientos:
Open Access funding provided thanks to the CRUE-Universitat Politecnica de Valencia agreement with Springer Nature. Grant RTI2018098842-B-I00 funded by MCIN/AEI/1013039/501100011033 and by ERDF "A way of making Europe" is ...[+]
Tipo: Artículo

References

Achir, N., Dhuique-Mayer, C., Hadjal, T., Madani, K., Pain, J. P., & Dornier, M. (2016). Pasteurization of citrus juices with ohmic heating to preserve the carotenoid profile. Innovative Food Science and Emerging Technologies, 33, 397–404. https://doi.org/10.1016/j.ifset.2015.11.002

Adebayo, S. E., Hashim, N., Abdan, K., & Hanafi, M. (2016). Application and potential of backscattering imaging techniques in agricultural and food processing - A review. Journal of Food Engineering, 169, 155–164. https://doi.org/10.1016/j.jfoodeng.2015.08.006

Aguilera, J. M., & Park, D. J. (2016). Texture-modified foods for the elderly: Status, technology and opportunities. Trends in Food Science and Technology, 57, 156–164. https://doi.org/10.1016/j.tifs.2016.10.001 [+]
Achir, N., Dhuique-Mayer, C., Hadjal, T., Madani, K., Pain, J. P., & Dornier, M. (2016). Pasteurization of citrus juices with ohmic heating to preserve the carotenoid profile. Innovative Food Science and Emerging Technologies, 33, 397–404. https://doi.org/10.1016/j.ifset.2015.11.002

Adebayo, S. E., Hashim, N., Abdan, K., & Hanafi, M. (2016). Application and potential of backscattering imaging techniques in agricultural and food processing - A review. Journal of Food Engineering, 169, 155–164. https://doi.org/10.1016/j.jfoodeng.2015.08.006

Aguilera, J. M., & Park, D. J. (2016). Texture-modified foods for the elderly: Status, technology and opportunities. Trends in Food Science and Technology, 57, 156–164. https://doi.org/10.1016/j.tifs.2016.10.001

Alcalde, S., Ricote, M., & Rodríguez, R. (2020). Dysphagia Guide. Feeding in dysphagia: textural adequacy and the use of thickeners (Chapter 7).

Andersson, J., Garrido-Bañuelos, G., Bergdoll, M., Vilaplana, F., Menzel, C., Mihnea, M., & Lopez-Sanchez, P. (2022). Comparison of steaming and boiling of root vegetables for enhancing carbohydrate content and sensory profile. Journal of Food Engineering, 312. https://doi.org/10.1016/j.jfoodeng.2021.110754

Bai, Y., Zhang, M., Chandra Atluri, S., Chen, J., & Gilbert, R. G. (2020). Relations between digestibility and structures of pumpkin starches and pectins. Food Hydrocolloids, 106. https://doi.org/10.1016/j.foodhyd.2020.105894

Bermejo-Prada, A., van Buggenhout, S., Otero, L., Houben, K., van Loey, A., & Hendrickx, M. E. (2014). Kinetics of thermal and high-pressure inactivation of avocado polygalacturonase. Innovative Food Science and Emerging Technologies, 26, 51–58. https://doi.org/10.1016/j.ifset.2014.05.005

Bober, J. R., & Nair, N. U. (2019). Galactose to tagatose isomerization at moderate temperatures with high conversion and productivity. Nature Communications, 10(1). https://doi.org/10.1038/s41467-019-12497-8

Cesaretti, M., Luppi, E., Maccari, F., & Volpi, N. (2003). A 96-well assay for uronic acid carbazole reaction. Carbohydrate Polymers, 54(1), 59–61. https://doi.org/10.1016/S0144-8617(03)00144-9

Cichero, J. A. Y., Steele, C., Duivestein, J., Clavé, P., Chen, J., Kayashita, J., Dantas, R., Lecko, C., Speyer, R., Lam, P., & Murray, J. (2013). The need for international terminology and definitions for texture-modified foods and thickened liquids used in dysphagia management: Foundations of a global initiative. Current Physical Medicine and Rehabilitation Reports, 1(4), 280–291. https://doi.org/10.1007/s40141-013-0024-z

Dini, I., Tenore, G. C., & Dini, A. (2013). Effect of industrial and domestic processing on antioxidant properties of pumpkin pulp. LWT - Food Science and Technology, 53(1), 382–385. https://doi.org/10.1016/j.lwt.2013.01.005

Drabo, P., & Delidovich, I. (2018). Catalytic isomerization of galactose into tagatose in the presence of bases and Lewis acids. Catalysis Communications, 107, 24–28. https://doi.org/10.1016/j.catcom.2018.01.011

Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A., & Smith, F. (1956). Colorimetric method for determination of sugars and related substances. Analytical Chemistry, 28(3), 350–356. https://doi.org/10.1021/ac60111a017

Eom, S. H., Chun, Y. G., Park, C. E., Kim, B. K., Lee, S. H., & Park, D. J. (2018). Application of freeze–thaw enzyme impregnation to produce softened root vegetable foods for elderly consumers. Journal of Texture Studies, 49(4), 404–414. https://doi.org/10.1111/jtxs.12341

Fachin, D., van Loey, A. M., Ly Nguyen, B., Verlent, I., Indrawati, A., & Hendrickx, M. E. (2003). Inactivation kinetics of polygalacturonase in tomato juice. Innovative Food Science and Emerging Technologies, 4(2), 135–142. https://doi.org/10.1016/S1466-8564(02)00090-5

Fuentes, C., Verdú, S., Fuentes, A., Ruiz, M. J., & Barat, J. M. (2022). Effects of essential oil components exposure on biological parameters of Caenorhabditis elegans. Food and Chemical Toxicology, 159. https://doi.org/10.1016/j.fct.2021.112763

Gallego, M., Arnal, M., Barat, J. M., & Talens, P. (2021). Effect of cooking on protein digestion and antioxidant activity of different legume pastes. Foods, 10(1). https://doi.org/10.3390/foods10010047

Gallego, M., Barat, J. M., Grau, R., & Talens, P. (2022). Compositional, structural design and nutritional aspects of texture-modified foods for the elderly. Trends in Food Science and Technology, 119, 152–163. https://doi.org/10.1016/j.tifs.2021.12.008

Grau, R., Verdú, S., Pérez, A. J., Barat, J. M., & Talens, P. (2021). Laser-backscattering imaging for characterizing pork loin tenderness. Effect of pre-treatment with enzyme and cooking. Journal of Food Engineering, 299. https://doi.org/10.1016/j.jfoodeng.2021.110508

Gwala, S., Wainana, I., Pallares Pallares, A., Kyomugasho, C., Hendrickx, M., & Grauwet, T. (2019). Texture and interlinked post-process microstructures determine the in vitro starch digestibility of Bambara groundnuts with distinct hard-to-cook levels. Food Research International, 120, 1–11. https://doi.org/10.1016/j.foodres.2019.02.022

Huang, D., Boxin, O. U., & Prior, R. L. (2005). The chemistry behind antioxidant capacity assays. Journal of Agricultural and Food Chemistry, 53(6), 1841–1856. https://doi.org/10.1021/jf030723c

Kao, F. J., Chiu, Y. S., & Chiang, W. D. (2014). Effect of water cooking on antioxidant capacity of carotenoid-rich vegetables in Taiwan. Journal of Food and Drug Analysis, 22(2), 202–209. https://doi.org/10.1016/j.jfda.2013.09.010

Lee, S. F., Harris, R., & Stout-Delgado, H. W. (2020). Targeted antioxidants as therapeutics for treatment of pneumonia in the elderly. Translational Research, 220, 43–56. https://doi.org/10.1016/j.trsl.2020.03.002

Lešková, E., Kubíková, J., Kováčiková, E., Košická, M., Porubská, J., & Holčíková, K. (2006). Vitamin losses: Retention during heat treatment and continual changes expressed by mathematical models. Journal of Food Composition and Analysis, 19(4), 252–276. https://doi.org/10.1016/j.jfca.2005.04.014

Li, F., Wei, Y., Liang, L., Huang, L., Yu, G., & Li, Q. (2021). A novel low-molecular-mass pumpkin polysaccharide: Structural characterization, antioxidant activity, and hypoglycemic potential. Carbohydrate Polymers, 251. https://doi.org/10.1016/j.carbpol.2020.117090

Longato, E., Lucas-González, R., Peiretti, P. G., Meineri, G., Pérez-Alvarez, J. A., Viuda-Martos, M., & Fernández-López, J. (2017). The effect of natural ingredients (amaranth and pumpkin seeds) on the quality properties of chicken burgers. Food and Bioprocess Technology, 10(11), 2060–2068. https://doi.org/10.1007/s11947-017-1978-0

Lyu, Y., Bi, J., Chen, Q., Wu, X., Qiao, Y., Hou, H., & Zhang, X. (2021). Bioaccessibility of carotenoids and antioxidant capacity of seed-used pumpkin byproducts powders as affected by particle size and corn oil during in vitro digestion process. Food Chemistry, 343. https://doi.org/10.1016/j.foodchem.2020.128541

Mashiane, P., Mashitoa, F. M., Slabbert, R. M., & Sivakumar, D. (2021). Impact of household cooking techniques on colour, antioxidant and sensory properties of African pumpkin and pumpkin leaves. International Journal of Gastronomy and Food Science, 23. https://doi.org/10.1016/j.ijgfs.2021.100307

Medina-Torres, L., Calderas, F., Gallegos-Infante, J. A., Gonzalez-Laredo, R. F., Rocha-Guzman, N. E., & Harte, F. (2009). Mechanical properties of ovalbumin gels formed at different conditions of concentration, ionic strength, pH, and aging time. Food and Bioprocess Technology, 3(1), 150–154. https://doi.org/10.1007/s11947-009-0257-0

Miglio, C., Chiavaro, E., Visconti, A., Fogliano, V., & Pellegrini, N. (2008). Effects of different cooking methods on nutritional and physicochemical characteristics of selected vegetables. Journal of Agricultural and Food Chemistry, 56(1), 139–147. https://doi.org/10.1021/jf072304b

Nakatsu, S., Kohyama, K., Watanabe, Y., Shibata, K., Sakamoto, K., & Shimoda, M. (2012). Mechanical properties of softened foodstuffs processed by freeze-thaw infusion of macerating enzyme. Innovative Food Science and Emerging Technologies, 16, 267–276. https://doi.org/10.1016/j.ifset.2012.07.010

Paciulli, M., Rinaldi, M., Rodolfi, M., Ganino, T., Morbarigazzi, M., & Chiavaro, E. (2019). Effects of high hydrostatic pressure on physico-chemical and structural properties of two pumpkin species. Food Chemistry, 274, 281–290. https://doi.org/10.1016/j.foodchem.2018.09.021

Park, J. J., & Lee, W. Y. (2020). Softening of lotus root and carrot using freeze-thaw enzyme infusion for texture-modified foods. Food Bioscience, 35. https://doi.org/10.1016/j.fbio.2020.100557

Phuhongsung, P., Zhang, M., & Devahastin, S. (2020). Influence of surface pH on color, texture and flavor of 3D printed composite mixture of soy protein isolate, pumpkin, and beetroot. Food and Bioprocess Technology, 13(9), 1600–1610. https://doi.org/10.1007/s11947-020-02497-8

Prior, R. L., Wu, X., & Schaich, K. (2005). Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. Journal of Agricultural and Food Chemistry, 53(10), 4290–4302. https://doi.org/10.1021/jf0502698

Ribeiro, E. M. G., Chitchumroonchokchai, C., de Carvalho, L. M. J., de Moura, F. F., de Carvalho, J. L. V., & Failla, M. L. (2015). Effect of style of home cooking on retention and bioaccessibility of pro-vitamin A carotenoids in biofortified pumpkin (Cucurbita moschata Duch.). Food Research International, 77, 620–626. https://doi.org/10.1016/j.foodres.2015.08.038

Roininen, K., Fillion, L., Kilcast, D., & Lähteenmäki, L. (2004). Exploring difficult textural properties of fruit and vegetables for the elderly in Finland and the United Kingdom. Food Quality and Preference, 15(6), 517–530. https://doi.org/10.1016/j.foodqual.2003.11.003

Sakamoto, K., Shibata, K., & Ishihara, M. (2006). Decreased hardness of dietary fiber-rich foods by the enzyme-infusion method. Bioscience, Biotechnology and Biochemistry, 70(7), 1564–1570. https://doi.org/10.1271/bbb.50562

Segura-Badilla, O., Kammar-García, A., Vera-López, O., Aguilar-Alonso, P., Lazcano-Hernández, M., Avila-Sosa, R., & Navarro-Cruz, A. R. (2018). Simplified equation for resting energy expenditure in a population of elderly Chileans compared to indirect calorimetry. NFS Journal, 13, 23–29. https://doi.org/10.1016/j.nfs.2018.10.002

Shibata, K., Sakamoto, K., Ishihara, M., Nakatsu, S., Kajihara, R., & Shimoda, M. (2010). Effects of freezing conditions on enzyme impregnation into food materials by freeze-thaw infusion. Food Science and Technology Research, 16(5), 359–364. https://doi.org/10.3136/fstr.16.359

Singh, A., Raigond, P., Lal, M. K., Singh, B., Thakur, N., Changan, S. S., Kumar, D., & Dutt, S. (2020). Effect of cooking methods on glycemic index and in vitro bioaccessibility of potato (Solanum tuberosum L.) carbohydrates. LWT, 127. https://doi.org/10.1016/j.lwt.2020.109363

Su, D., Wang, Z., Dong, L., Huang, F., Zhang, R., Jia, X., Wu, G., & Zhang, M. (2019). Impact of thermal processing and storage temperature on the phenolic profile and antioxidant activity of different varieties of lychee juice. LWT, 116. https://doi.org/10.1016/j.lwt.2019.108578

Sun, J., Zhou, W., Huang, D., Fuh, J. Y. H., & Hong, G. S. (2015). An overview of 3D printing technologies for food fabrication. Food and Bioprocess Technology, 8(8), 1605–1615. https://doi.org/10.1007/s11947-015-1528-6

Tomašević, I., Putnik, P., Valjak, F., Pavlić, B., Šojić, B., Bebek Markovinović, A., & Bursać Kovačević, D. (2021). 3D printing as novel tool for fruit-based functional food production. Current Opinion in Food Science, 41, 138–145. https://doi.org/10.1016/j.cofs.2021.03.015

United Nations. (2020). Department of economic and social affairs, population division. World Population Ageing 2020 Highlights: Living arrangements of older persons. ST/ESA/SER.A/451.

Verdú, S., Barat, J. M., & Grau, R. (2019). Laser backscattering imaging as a non-destructive quality control technique for solid food matrices: Modelling the fibre enrichment effects on the physico-chemical and sensory properties of biscuits. Food Control, 100, 278–286. https://doi.org/10.1016/j.foodcont.2019.02.004

Verdú, S., Pérez, A. J., Barat, J. M., & Grau, R. (2021). Non-destructive control in cheese processing: Modelling texture evolution in the milk curdling phase by laser backscattering imaging. Food Control, 121. https://doi.org/10.1016/j.foodcont.2020.107638

Wichansawakun, S., Chupisanyarote, K., Wongpipathpong, W., Kaur, G., & Buttar, H. S. (2022). Antioxidant diets and functional foods attenuate dementia and cognition in elderly subjects. Functional Foods and Nutraceuticals in Metabolic and Non-Communicable Diseases, 533–549. https://doi.org/10.1016/b978-0-12-819815-5.00028-8

Wilson, A., Anukiruthika, T., Moses, J. A., & Anandharamakrishnan, C. (2020). Customized shapes for chicken meat–based products: Feasibility study on 3D-printed nuggets. Food and Bioprocess Technology, 13(11), 1968–1983. https://doi.org/10.1007/s11947-020-02537-3

Yang, H., Wu, Q., Ng, L. Y., & Wang, S. (2017). Effects of vacuum impregnation with calcium lactate and pectin methylesterase on quality attributes and chelate-soluble pectin morphology of fresh-cut papayas. Food and Bioprocess Technology, 10(5), 901–913. https://doi.org/10.1007/s11947-017-1874-7

Yu, G., Zhao, J., Wei, Y., Huang, L., Li, F., Zhang, Y., & Li, Q. (2021). Physicochemical properties and antioxidant activity of pumpkin polysaccharide (Cucurbita moschata Duchesne ex Poiret) modified by subcritical water. https://doi.org/10.3390/foods1001

Zhemerichkin, D. A., & Ptitchkina, N. M. (1995). The composition and properties of pumpkin and sugar beet pectins. Topics in Catalysis, 9(2), 147–149. https://doi.org/10.1016/S0268-005X(09)80277-4

Zhou, C. L., Liu, W., Zhao, J., Yuan, C., Song, Y., Chen, D., Ni, Y. Y., & Li, Q. H. (2014). The effect of high hydrostatic pressure on the microbiological quality and physical-chemical characteristics of pumpkin (Cucurbita maxima Duch.) during refrigerated storage. Innovative Food Science and Emerging Technologies, 21, 24–34. https://doi.org/10.1016/j.ifset.2013.11.002

Zhou, C. L., Mi, L., Hu, X. Y., & Zhu, B. H. (2017). Evaluation of three pumpkin species: Correlation with physicochemical, antioxidant properties and classification using SPME-GC–MS and E-nose methods. Journal of Food Science and Technology, 54(10), 3118–3131. https://doi.org/10.1007/s13197-017-2748-8

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem