- -

Photoredox catalysis powered by triplet fusion upconversion: arylation of heteroarenes

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Photoredox catalysis powered by triplet fusion upconversion: arylation of heteroarenes

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Castellanos-Soriano, Jorge es_ES
dc.contributor.author Álvarez-Gutiérrez, Daniel es_ES
dc.contributor.author Jiménez Molero, María Consuelo es_ES
dc.contributor.author Pérez-Ruiz, Raúl es_ES
dc.date.accessioned 2023-10-05T18:02:04Z
dc.date.available 2023-10-05T18:02:04Z
dc.date.issued 2022-07 es_ES
dc.identifier.issn 1474-905X es_ES
dc.identifier.uri http://hdl.handle.net/10251/197779
dc.description.abstract [EN] In this work, the feasibility of triplet fusion upconversion (TFU, also named triplet-triplet annihilation upconversion) technology for the functionalization (arylation) of furans and thiophenes has been successfully proven. Activation of aryl halides by TFU leads to generation of aryl radical intermediates; trapping of the latter by the corresponding heteroarenes, which act as nucleophiles, affords the final coupling products. Advantages of this photoredox catalytic method include the use of very mild conditions (visible light, standard conditions), employment of commercially available reactants and low-loading metal-free photocatalysts, absence of any sacrificial agent (additive) in the medium and short irradiation times. The involvement of the high energetic delayed fluorescence in the reaction mechanism has been evidenced by quenching studies, whereas the two-photon nature of this photoredox arylation of furans and thiophenes has been manifested by the dependence on the energy source power. Finally, the scaling-up conditions have been gratifyingly afforded by a continuous-flow device. es_ES
dc.description.sponsorship We thank the Generalitat Valenciana (project CIDEGENT/2018/044) and the Spanish Government (project PID2019-105391GB-C22 funded by MCIN/AEI/10.13039/501100011033 and fellowship PRE2020-093783 funded by MCIN/AEI/10.13039/501100011033) for financial support. We also thank Prof. Julia Perez-Prieto for spectroscopy facilities. es_ES
dc.language Inglés es_ES
dc.publisher The Royal Society of Chemistry es_ES
dc.relation.ispartof Photochemical & Photobiological Sciences es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Visible light es_ES
dc.subject Photoredox catalysis es_ES
dc.subject Arylations es_ES
dc.subject Furans es_ES
dc.subject Thiophenes es_ES
dc.subject Photon upconversion es_ES
dc.subject Triplet fusion (triplet-triplet annihilation) es_ES
dc.subject.classification QUIMICA ORGANICA es_ES
dc.title Photoredox catalysis powered by triplet fusion upconversion: arylation of heteroarenes es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s43630-022-00203-5 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-105391GB-C22/ES/DESARROLLO DE NUEVOS SISTEMAS DE CONVERSION BIFOTONICA A MAYOR FRECUENCIA BASADOS EN ANIQUILACION TRIPLETE-TRIPLETE PARA FOTOCATALISIS REDOX CON LUZ VISIBLE/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GENERALITAT VALENCIANA//CIDEGENT%2F2018%2F044//PHOTON UPCONVERSION REDOX CATALYSIS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//PRE2020-093783/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros Industriales - Escola Tècnica Superior d'Enginyers Industrials es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.description.bibliographicCitation Castellanos-Soriano, J.; Álvarez-Gutiérrez, D.; Jiménez Molero, MC.; Pérez-Ruiz, R. (2022). Photoredox catalysis powered by triplet fusion upconversion: arylation of heteroarenes. Photochemical & Photobiological Sciences. 21(7):1175-1184. https://doi.org/10.1007/s43630-022-00203-5 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1007/s43630-022-00203-5 es_ES
dc.description.upvformatpinicio 1175 es_ES
dc.description.upvformatpfin 1184 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 21 es_ES
dc.description.issue 7 es_ES
dc.identifier.pmid 35303293 es_ES
dc.relation.pasarela S\460343 es_ES
dc.contributor.funder GENERALITAT VALENCIANA es_ES
dc.contributor.funder AGENCIA ESTATAL DE INVESTIGACION es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.description.references Sun, Q.-C., Ding, Y. C., Sagar, D. M., & Nagpal, P. (2017). Photon upconversion towards applications in energy conversion and bioimaging. Progress in Surface Science, 92, 281–316. https://doi.org/10.1021/cm020897u es_ES
dc.description.references Frazer, L., Gallaher, J. K., & Schmidt, T. W. (2017). Optimizing the efficiency of solar photon upconversion. ACS Energy Letters, 2, 1346–1354. https://doi.org/10.1021/acsenergylett.7b00237 es_ES
dc.description.references Gulzar, A., Xu, J., Yang, P. G., He, F., & Xu, L. (2017). Upconversion processes: Versatile biological applications and biosafety. Nanoscale, 9, 12248–12282. https://doi.org/10.1039/C7NR01836C es_ES
dc.description.references He, G. S., Tan, L.-S., Zheng, Q. D., & Prasad, P. N. (2008). Multiphoton absorbing materials: Molecular designs, characterizations, and applications. Chemical Reviews, 108, 1245–1330. https://doi.org/10.1021/cr050054x es_ES
dc.description.references Bharmoria, P., Bildirir, H., & Moth-Poulsen, K. (2020). Triplet-triplet annihilation based near infrared to visible molecular photon upconversion. Chemical Society Reviews, 49, 6529–6554. https://doi.org/10.1039/D0CS00257G es_ES
dc.description.references Rauch, M. P., & Knowles, R. R. (2018). Applications and prospects for triplet-triplet annihilation photon upconversion. Chimia, 72, 501–507. https://doi.org/10.2533/chimia.2018.501 es_ES
dc.description.references Singh-Rachford, T. N., & Castellano, F. N. (2010). Photon upconversion based on sensitized triplet–triplet annihilation. Coordination Chemistry Reviews, 254, 2560–2573. https://doi.org/10.1016/j.ccr.2010.01.003 es_ES
dc.description.references Barawi, M., Fresno, F., Pérez-Ruiz, R., & de la Peña O’Shea, V. A. (2019). Photoelectrochemical hydrogen evolution driven by visible-to-ultraviolet photon upconversion. ACS Appl. Energy Mater., 2, 207–211. https://doi.org/10.1021/acsaem.8b01916 es_ES
dc.description.references Yanai, N., & Kimizuka, N. (2017). New triplet sensitization routes for photon upconversion: Thermally activated delayed fluorescence molecules, inorganic nanocrystals, and singlet-to-triplet absorption. Accounts of Chemical Research, 50, 2487–2495. https://doi.org/10.1021/acs.accounts.7b00235 es_ES
dc.description.references Schulze, T. F., & Schmidt, T. W. (2015). Photochemical upconversion: Present status and prospects for its application to solar energy conversion. Energy Environ Science, 8, 103–125. https://doi.org/10.1039/C4EE02481H es_ES
dc.description.references Zhou, J., Liu, Q., Feng, W., Sun, Y., & Li, F. (2015). Upconversion luminescent materials: Advances and applications. Chemical Reviews, 115, 395–465. https://doi.org/10.1021/cr400478f es_ES
dc.description.references Chen, G., Qiu, H., Prasad, P. N., & Chen, X. (2014). Upconversion nanoparticles: Design, nanochemistry, and applications in theranostics. Chemical Reviews, 114, 5161–5214. https://doi.org/10.1021/cr400425h es_ES
dc.description.references Castellano, F. N., & Schmidt, T. J. (2014). Photochemical upconversion: The primacy of kinetics. Journal of Physical Chemistry Letters, 5, 4062–4072. https://doi.org/10.1021/jz501799m es_ES
dc.description.references McCusker, C. E., & Castellano, F. N. (2013). Orange-to-blue and red-to-green photon upconversion with a broadband absorbing copper(I) MLCT sensitizer. Chemical Communications, 49, 3537–3539. https://doi.org/10.1039/C3CC40778K es_ES
dc.description.references Börjesson, K., Dzebo, D., Albinsson, B., & Moth-Poulsen, K. (2013). Photon upconversion facilitated molecular solar energy storage. J. Mater. Chem. A. https://doi.org/10.1039/C3TA12002C es_ES
dc.description.references Guo, S., Wu, W., Guo, H., & Zhao, J. (2012). Room-temperature long-lived triplet excited states of naphthalenediimides and their applications as organic triplet photosensitizers for photooxidation and triplet-triplet annihilation upconversions. Journal of Organic Chemistry, 77, 3933–3943. https://doi.org/10.1021/jo3003002 es_ES
dc.description.references Gallavardin, T., Armagnat, C., Maury, O., Baldeck, P. L., Lindgren, M., Monnereau, C., & Andraud, C. (2012). An improved singlet oxygen sensitizer with two-photon absorption and emission in the biological transparency window as a result of ground state symmetry-breaking. Chemical Communications, 48, 1689–1691. https://doi.org/10.1039/C2CC15904J es_ES
dc.description.references Khnayzer, R. S., Blumhoff, J., Harrington, J. A., Haefele, A., Denga, F., & Castellano, F. N. (2012). Upconversion-powered photoelectrochemistry. Chemical Communications, 48, 209–211. https://doi.org/10.1039/C1CC16015J es_ES
dc.description.references Gertsen, A. S., Koerstz, M., & Mikkelsen, K. V. (2018). Benchmarking triplet-triplet annihilation photon upconversion schemes. Physical Chemistry Chemical Physics, 20, 12182–12192. https://doi.org/10.1039/C8CP00588E es_ES
dc.description.references Hossain, A., Bhattacharyya, A., & Reiser, O. (2019). Copper’s rapid ascent in visible-light photoredox catalysis. Science, 364, 450. https://doi.org/10.1126/science.aav9713 es_ES
dc.description.references Zhou, Q. Q., Zou, Y. Q., Lu, L. Q., & Xiao, W. J. (2019). Visible-light-induced organic photochemical reactions through energy-transfer pathways. Angewandte Chemie International Edition, 58, 1586–1604. https://doi.org/10.1002/anie.201803102 es_ES
dc.description.references Strieth-Kalthoff, F., James, M. J., Teders, M., Pitzer, L., & Glorius, F. (2018). Energy transfer catalysis mediated by visible light: Principles, applications. Chemical Society Reviews, 47, 7190–7202. https://doi.org/10.1039/C8CS00054A es_ES
dc.description.references Twilton, J., Le, C., Zhang, P., Shaw, M. H., Evans, R. W., & MacMillan, D. W. C. (2017). The merger of transition metal and photocatalysis. Nature Reviews Chemistry, 1, 0052. https://doi.org/10.1038/s41570-017-0052 es_ES
dc.description.references Romero, N. A., & Nicewicz, D. A. (2016). Organic photoredox catalysis. Chemical Reviews, 116, 10075–10166. https://doi.org/10.1021/acs.chemrev.6b00057 es_ES
dc.description.references Skubi, K. L., Blum, T. R., & Yoon, T. P. (2016). Dual catalysis strategies in photochemical synthesis. Chemical Reviews, 116, 10035–10074. https://doi.org/10.1021/acs.chemrev.6b00018 es_ES
dc.description.references Prier, C. K., Rankic, D. A., & MacMillan, D. W. C. (2013). Visible light photoredox catalysis with transition metal complexes: Applications in organic synthesis. Chemical Reviews, 113, 5322–5363. https://doi.org/10.1021/cr300503r es_ES
dc.description.references Schultz, D. M., & Yoon, T. P. (2014). Solar synthesis: Prospects in visible light photocatalysis. Science, 343, 1239176. https://doi.org/10.1126/science.1239176 es_ES
dc.description.references Xuan, J., & Xiao, W.-J. (2012). Visible-light photoredox catalysis. Angewandte Chemie International Edition, 51, 6828–6838. https://doi.org/10.1002/anie.201200223 es_ES
dc.description.references Beatty, J. W., & Stephenson, C. R. J. (2015). Amine functionalization via oxidative photoredox catalysis: Methodology development and complex molecule synthesis. Accounts of Chemical Research, 48, 1474–1484. https://doi.org/10.1021/acs.accounts.5b00068 es_ES
dc.description.references Nakajima, K., Miyake, Y., & Nishibayashi, Y. (2016). Synthetic utilization of α-aminoalkyl radicals and related species in visible light photoredox catalysis. Accounts of Chemical Research, 49, 1946–1956. https://doi.org/10.1021/acs.accounts.6b00251 es_ES
dc.description.references Majek, M., & Jacobi von Wangelin, A. (2016). Mechanistic perspectives on organic photoredox catalysis for aromatic substitutions. Accounts of Chemical Research, 49, 2316–2327. https://doi.org/10.1021/acs.accounts.6b00293 es_ES
dc.description.references Ghosh, I., Marzo, L., Das, A., Shaikh, R., & Koenig, B. (2016). Visible light mediated photoredox catalytic arylation reactions. Accounts of Chemical Research, 49, 1566–1577. https://doi.org/10.1021/acs.accounts.6b00229 es_ES
dc.description.references Jin, Y., & Fu, H. (2017). Visible-light photoredox decarboxylative couplings. Asian Journal of Organic Chemistry, 6, 368–385. https://doi.org/10.1002/ajoc.201600513 es_ES
dc.description.references Xuan, J., Zhang, Z.-G., & Xiao, W.-J. (2015). Visible-light-induced decarboxylative functionalization of carboxylic acids and their derivatives. Angewandte Chemie International Edition, 54, 15632–15641. https://doi.org/10.1002/anie.201505731 es_ES
dc.description.references Ravelli, D., Protti, S., Fagnoni, M., & Albini, A. (2013). Visible light photocatalysis. A green choice? Current Organic Chemistry, 17, 2366–2373. https://doi.org/10.2174/13852728113179990051 es_ES
dc.description.references Reckenthler, M., & Griesbeck, A. G. (2013). Photoredox catalysis for organic syntheses. Advanced Synthesis and Catalysis, 355, 2727–2744. https://doi.org/10.1002/adsc.201300751 es_ES
dc.description.references Teply, F. (2011). Photoredox catalysis by [Ru(bpy)3]2+ to trigger transformations of organic molecules. Organic synthesis using visible-light photocatalysis and its 20th century roots. Collection of Czechoslovak Chemical Communications, 76, 859–917. https://doi.org/10.1135/cccc2011078 es_ES
dc.description.references Ghosh, I., Ghosh, T., Bardagi, J. I., & König, B. (2014). Reduction of aryl halides by consecutive visible light-induced electron transfer processes. Science, 346, 725–728. https://doi.org/10.1126/science.1258232 es_ES
dc.description.references Barham, J. P., & König, B. (2020). Synthetic photoelectrochemistry. Angewandte Chemie International Edition, 59, 11732–11747. https://doi.org/10.1002/anie.201913767 es_ES
dc.description.references Garnes-Portolés, F., Greco, R., Oliver-Meseguer, J., Castellanos-Soriano, J., Jiménez, M. C., López-Haro, M., Hernández-Garrido, J. C., Boronat, M., Pérez-Ruiz, R., & Leyva-Pérez, A. (2021). Regioirregular and catalytic Mizoroki-Heck reactions. Nature Catalysis, 4(4), 293–303. https://doi.org/10.1038/s41929-021-00592-3 es_ES
dc.description.references Glaser, F., Kerzig, C., & Wenger, O. S. (2021). Sensitization-initiated electron transfer via upconversion: Mechanism and photocatalytic applications. Chemical Science, 12, 9922–9933. https://doi.org/10.1039/D1SC02085D es_ES
dc.description.references Castellanos-Soriano, J., Herrera-Luna, J. C., Díaz Díaz, D., Jiménez, M. C., & Pérez-Ruiz, R. (2020). Recent applications of biphotonic processes in organic synthesis. Organic Chemistry Frontiers, 7, 1709–1716. https://doi.org/10.1039/D0QO00466A es_ES
dc.description.references Ravetz, B. D., Pun, A. B., Churchill, E. M., Congreve, D. N., Rovis, T., & Campos, L. M. (2019). Photoredox catalysis using infrared light via triplet fusion upconversion. Nature, 565, 343–346. https://doi.org/10.1038/s41586-018-0835-2 es_ES
dc.description.references Tokunaga, A., Uriarte, L. M., Mutoh, K., Fron, E., Hofkens, J., Sliwa, M., & Abe, J. (2019). Photochromic reaction by red light via triplet fusion upconversion. Journal of the American Chemical Society, 141, 17744–17753. https://doi.org/10.1021/jacs.9b08219 es_ES
dc.description.references López-Calixto, C. G., Liras, M., de la Peña O’Shea, V. A., & Pérez-Ruiz, R. (2018). Synchronized biphotonic process triggering C–C coupling catalytic reactions. Applied Catalysis B, 237, 18–23. https://doi.org/10.1016/j.apcatb.2018.05.062 es_ES
dc.description.references Kerzig, C., & Wenger, O. S. (2018). Sensitized triplet-triplet annihilation upconversion in water and its application to photochemical transformations. Chemical Science, 57, 6670–6678. https://doi.org/10.1039/C8SC01829D es_ES
dc.description.references Majek, M., Faltermeier, U., Dick, B., Pérez-Ruiz, R., & Jacobi von Wangelin, A. (2015). Application of visible-to-UV photon upconversion to photoredox catalysis: The activation of aryl bromides. Chemistry A European Journal, 21, 15496–15501. https://doi.org/10.1002/chem.201502698 es_ES
dc.description.references Haering, M., Pérez-Ruiz, R., Jacobi von Wangelin, A., & Diaz Diaz, D. (2015). Intragel photoreduction of aryl halides by green-to-blue upconversion under aerobic conditions. Chemical Communications, 51, 16848–16851. https://doi.org/10.1039/C5CC06917C es_ES
dc.description.references Ackermann, L. (2009). Modern Arylation Methods. Wiley-VCH Verlag GmbH & KGaA. es_ES
dc.description.references Kalay, E., Küçükkeçeci, H., Kilic, H., & Metin, Ö. (2020). Black Phosphorus as a metal-free, visible-light active heterogeneous photoredox catalyst for the direct c-h arylation of heteroarenes. Chemical Communications, 56, 5901–5904. https://doi.org/10.1039/D0CC01874K es_ES
dc.description.references Schemalzbauer, M., Ghosh, I., & König, B. (2019). Utilising excited state organic anions for photoredox catalysis: Activation of (hetero)aryl chlorides by visible light-absorbing 9-anthrolate anions. Faraday Discussions, 215, 364–378. https://doi.org/10.1039/C8FD00176F es_ES
dc.description.references Wang, L., Byun, J., Li, R., Huang, W., & Zhang, K. A. I. (2018). Molecular Design of donor-acceptor-type organic photocatalysts for metal-free aromatic C–C bond formations under visible light. Advanced Synthesis and Catalysis, 360, 4312–4318. https://doi.org/10.1002/adsc.201800950 es_ES
dc.description.references Bu, M.-J., Lu, G.-P., Jiang, J., & Cai, C. (2018). Merging visible-light photoredox and micellar catalysis: Arylation reactions with anilines nitrosated in situ. Catalysis Science & Technology, 8, 3728–3732. https://doi.org/10.1039/C8CY01221K es_ES
dc.description.references Maity, P., Kundu, D., & Ranu, B. C. (2015). Visible-light-photocatalyzed metal-free C-H heteroarylation of heteroarenes at room temperature: A sustainable synthesis of biheteroaryls. European Journal of Organic Chemistry, 2015, 1727–1734. https://doi.org/10.1002/ejoc.201500006 es_ES
dc.description.references Zhang, J., Chen, J., Zhang, X., & Lei, X. (2014). Total syntheses of menisporphine and daurioxoisoporphine C enabled by photoredox-catalyzed direct C–H arylation of isoquinoline with aryldiazonium salt. Journal of Organic Chemistry, 79, 10682–10688. https://doi.org/10.1021/jo5020432 es_ES
dc.description.references Cheng, Y., Gu, X., & Li, P. (2013). Visible-light photoredox in homolytic aromatic substitution: Direct arylation of arenes with aryl halides. Organic Letters, 15, 2664–2667. https://doi.org/10.1021/ol400946k es_ES
dc.description.references Hari, D. P., Schroll, P., & Koenig, B. (2012). Metal-free, visible-light-mediated direct C–H arylation of heteroarenes with aryl diazonium salts. Journal of the American Chemical Society, 134, 2958–2961. https://doi.org/10.1021/ja212099r es_ES
dc.description.references Neumeier, M., Sampedro, D., Májek, M., de la Peña O’Shea, V. A., Jacobi von Wangelin, A., & Pérez-Ruiz, R. (2018). Dichromatic photo-catalytic substitutions of aryl halides with a small organic dye. Chemistry A European Journal, 24, 105–108. https://doi.org/10.1002/chem.201705326 es_ES
dc.description.references Chatterjee, A., & König, B. (2019). Birch-type photoreduction of arenes and heteroarenes by sensitized electron transfer. Angewdte Chemie International Edition, 58, 14289–14294. https://doi.org/10.1002/anie.201905485 es_ES
dc.description.references Pal, A. K., Li, C., Hanan, G. S., & Zysman-Colman, E. (2018). Blue-emissive cobalt(III) complexes and their use in the photocatalytic trifluoromethylation of polycyclic aromatic hydrocarbons. Angewdte Chemie International Edition, 57, 8027–8031. https://doi.org/10.1002/anie.201802532 es_ES
dc.description.references Graham, M. A., Noonan, G., Cherryman, J. H., Douglas, J. J., Gonzalez, M., Jackson, L. V., Leslie, K., Liu, Z.-Q., McKinney, D., Munday, R. H., Parsons, C. D., Whittaker, D. T. E., Zhang, E.-X., & Zhang, J.-W. (2021). Development and proof of concept for a large-scale photoredox additive-free minisci reaction. Organic Process Research & Development, 25, 57–67. https://doi.org/10.1021/acs.oprd.0c00483 es_ES
dc.description.references Brown, M., Aljarah, M., Asiki, H., Leung, L. M. H., Smithen, D. A., Miller, N., Nemeth, G., Davies, L., Niculescu-Duvaz, D., Zambon, A., & Springer, C. (2021). Toward the scale-up of a bicyclic homopiperazine via schmidt rearrangement and photochemical oxaziridine rearrangement in continuous-flow. Organic Process Research and Development, 25, 148–156. https://doi.org/10.1021/acs.oprd.6b00213 es_ES
dc.description.references Lévesque, F., Di Maso, M. J., Narsimhan, K., Wismer, M. K., & Naber, J. R. (2020). Design of a kilogram scale, plug flow photoreactor enabled by high power LEDs. Organic Process Research and Development, 24, 2935–2940. https://doi.org/10.1021/acs.oprd.0c00373 es_ES
dc.description.references Cambié, D., Bottecchia, C., Straathof, N. J. W., Hessel, V., & Noël, T. (2016). Applications of continuous-flow photochemistry in organic synthesis, material sciences, and water treatment. Chemical Reviews, 116, 10276–10341. https://doi.org/10.1021/acs.chemrev.5b00707 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem