- -

SVR and ARIMA models as machine learning solutions for solving the latency problem in real-time clock corrections

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

SVR and ARIMA models as machine learning solutions for solving the latency problem in real-time clock corrections

Mostrar el registro completo del ítem

Qafisheh, M.; Martín Furones, ÁE.; Capilla, RM.; Anquela Julián, AB. (2022). SVR and ARIMA models as machine learning solutions for solving the latency problem in real-time clock corrections. GPS Solutions. 26(3):1-14. https://doi.org/10.1007/s10291-022-01270-y

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/197781

Ficheros en el ítem

Metadatos del ítem

Título: SVR and ARIMA models as machine learning solutions for solving the latency problem in real-time clock corrections
Autor: Qafisheh, Mutaz Martín Furones, Ángel Esteban Capilla, Raquel M. Anquela Julián, Ana Belén
Entidad UPV: Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería Geodésica, Cartográfica y Topográfica - Escola Tècnica Superior d'Enginyeria Geodèsica, Cartogràfica i Topogràfica
Fecha difusión:
Resumen:
[EN] Real-time precise point positioning (PPP) has become a prevalent technique in global navigation satellite systems (GNSS). However, GNSS real-time users must receive space state representation (SSR) products to correct ...[+]
Palabras clave: Precise point positioning , Real-time positioning , Support vector regression , Autoregressive integrated moving average , Clock corrections
Derechos de uso: Reconocimiento (by)
Fuente:
GPS Solutions. (issn: 1080-5370 )
DOI: 10.1007/s10291-022-01270-y
Editorial:
Springer-Verlag
Versión del editor: https://doi.org/10.1007/s10291-022-01270-y
Agradecimientos:
Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature. We greatly appreciate the eforts of the IGS, Analysis and Data Centers, and tracking station managers for generating high-quality data ...[+]
Tipo: Artículo

References

Asari K, Saito M, Mikami I (2019) Capturing method of millimeter displacement in centimeter class PPP-RTK measured data. In: Proceedings of the ION GNSS 2019, Pacific PNT Meeting, Honolulu, Hawaii, April 2019, pp 367–375

Box GEP, Jenkins GM, Reinsel GC (2011) Time series analysis: forecasting and control, vol 734. Wiley, New York

Brownlee J (2017) Introduction to time series forecasting with python: how to prepare data and develop models to predict the future. In: Brownlee J (ed) Machine learning mastery [+]
Asari K, Saito M, Mikami I (2019) Capturing method of millimeter displacement in centimeter class PPP-RTK measured data. In: Proceedings of the ION GNSS 2019, Pacific PNT Meeting, Honolulu, Hawaii, April 2019, pp 367–375

Box GEP, Jenkins GM, Reinsel GC (2011) Time series analysis: forecasting and control, vol 734. Wiley, New York

Brownlee J (2017) Introduction to time series forecasting with python: how to prepare data and develop models to predict the future. In: Brownlee J (ed) Machine learning mastery

Cai C, Gao Y (2013) Modeling and assessment of combined GPS/GLONASS precise point positioning. GPS Solut 17(2):223–236

Clarkson KL, Hazan E, Woodruff DP (2012) Sublinear optimization for machine learning. J ACM. https://doi.org/10.1145/2371656.2371658

Daly IDK (1990) Characterization of NAVSTAR GPS and GLONASS on-board clocks. In: IEEE symposium on position location and navigation. A decade of excellence in the navigation sciences, Las Vegas, NV, USA, March 1990

Dow JM, Neilan RE, Rizos C (2009) The international GNSS service in a changing landscape of global navigation satellite systems. J Geod 83(3–4):191–198

Drucker H, Surges CJC, Kaufman L, Smola A, Vapnik V (1997) Support vector regression machines. Adv Neural Inf Process Syst 1:155–161

El-Mowafy A (2019a) Impact of predicting real-time clock corrections during their outages on precise point positioning. Surv Rev 51(365):183–192

El-Mowafy A (2019b) Predicting real-time orbit and clock corrections for positioning using GPS, GLONASS, and QZSS in natural hazard warning systems. J Appl Geod 13(2):69–79

El-Mowafy A, Deo M, Kubo N (2017) Maintaining real-time precise point positioning during outages of orbit and clock corrections. GPS Solut 21(3):937–947

Enge P, Misra P (2011) Global positioning system: signals, measurements, and performance—revised, 2nd edn. Ganga-Jamuna Press, Nanded

Ge M, Gendt G, Rothacher M, Shi C, Liu J (2008) Resolution of GPS carrier-phase ambiguities in Precise Point Positioning (PPP) with daily observations. J Geod 82(7):389–399. https://doi.org/10.1007/s00190-007-0187-4

Ge M, Chen J, Dousa J, Gendt G, Wickert J (2012) A computationally efficient approach for estimating high-rate satellite clock corrections in realtime. GPS Solut 16(1):9–17. https://doi.org/10.1007/s10291-011-0206-z

Georg Weber G, Mervart L, Stürze A, Stöcker D (2016) BNC Ntrip Client (BNC). A toolkit for retrieving, decoding, converting and processing real-time GNSS data streams. https://software.rtcm-ntrip.org/export/HEAD/ntrip/trunk/BNC/src/bnchelp.html. Accessed Jan 2020

Grayson B, Penna NT, Mills JP, Grant DS (2018) GPS precise point positioning for UAV photogrammetry. Photogramm Rec 33(164):427–447

Grinter T, Roberts C (2013) Real time precise point positioning: are we there yet? In: Proceedings of the international global navigation satellite systems society. IGNSS symposium 2013, Outrigger Gold Coast, Qld, Australia

Guyon I, Boser B, Vapnik V (1993) Automatic capacity tuning of very large VC-dimension classifiers. Adv Neural Inf Process Syst 5:147–155

Hadas T, Bosy J (2014) IGS RTS precise orbits and clocks verification and quality degradation over time. GPS Solut 19(1):93–105. https://doi.org/10.1007/s10291-014-0369-5

Hadas T, Bosy J (2015) IGS RTS precise orbits and clocks verification and quality. GPS Solut 19(1):93–105

Hauschild A, Montenbruck O, Steigenberger P (2013) Short-term analysis of GNSS clocks. GPS Solut 17(3):295–307

Henkel P, Psychas D, Günther C, Hugentobler U (2018) Estimation of satellite position, clock and phase bias corrections. J Geod 92(10):1199–1217

Hofmann-Wellenhof B, Lichtenegger H, Wasle E (2008) GNSS, global navigation satellite systems: GPS, GLONASS, GALILEO & more. Springer, New York

Huang G, Zhang Q (2012) Real-time estimation of satellite clock offset using adaptively robust Kalman filter with classified adaptive factors. GPS Solut 16(4):531–539. https://doi.org/10.1007/s10291-012-0254-z

Huang GW, Zhang Q, Xu GC (2014) Real-time clock offset prediction with an improved model. GPS Solut 18(1):95–104. https://doi.org/10.1007/s10291-013-0313-0

Hyndman RJ, Athanasopoulos G (2018). Forecasting: principles and practice. Online-open-access-textbooks

Johnston G, Riddell A, Hausler G (2017) The international GNSS service. In: Teunissen P, Montenbruck O (eds) Handbook of global navigation satellite systems. Springer, New York, pp 967–982. https://doi.org/10.1007/978-3-319-42928-1_33

Kim M, Kim J (2017) GA-ARMA model for predicting IGS RTS corrections. Int J Aerosp Eng. https://doi.org/10.1155/2017/6316590

Kouba J, Héroux P (2001) Precise point positioning using IGS orbit and clock products. GPS Solut 5(2):12–28. https://doi.org/10.1007/PL00012883

Kwiatkowski D, Phillips PCB, Schmidt P, Shin Y (1992) Testing the null hypothesis of stationarity against the alternative of a unit root. J Econom 54(1–3):159–178

Leick A, Rapoport L, Tatarnikov D (2015) GPS satellite surveying, 4th edn. Wiley, Hoboken

Li X, Ge M, Dai X, Ren X, Fritsche M, Wickert J, Schuh H (2015) Accuracy and reliability of multi-GNSS real-time precise positioning: GPS, GLONASS, BeiDou, and Galileo. J Geod 89(6):607–635

Maciuk K (2019) Satellite clock stability analysis depending on the reference clock type. Arab J Geosci. https://doi.org/10.1007/s12517-018-4069-2

Martín A, Anquela AB, Dimas-Pagés A, Cos-Gayón F (2015a) Validation of performance of real-time kinematic PPP. A possible tool for deformation monitoring. Measurement 69:95–108. https://doi.org/10.1016/j.measurement.2015.03.026

Martín A, Hadas T, Dimas A, Anquela AB, Berné JL (2015b) Influence of real-time products latency on kinematic PPP results. In: 5th international colloquium scientific and fundamental aspects of the galileo programme. Braunschweig, Germany

Nie Z, Liu F, Gao Y (2020) Real-time precise point positioning with a low-cost dual-frequency GNSS device. GPS Solut. https://doi.org/10.1007/s10291-019-0922-3

Piccolo D (1990) A distance measure for classifying ARIMA models. J Time Ser Anal 11(2):153–164. https://doi.org/10.1111/j.1467-9892.1990.tb00048.x

Qafisheh MWA, Martín A, Torres-Sospedra J (2020) Support vector regression machine learning tool to predict GNSS clock corrections in real-time PPP technique. ICL-GNSS 2020 WiP proceedings, June 2–4, 2020, Tampere, Finland. http://ceur-ws.org/Vol-2626/paper11.pdf

Sanz J, Juan JM, Zornoza J Hernández-Pajares M (2013) GNSS data processing. Volume I: fudamentals and algorithms. Ed. ESA communications. https://gssc.esa.int/navipedia/GNSS_Book/ESA_GNSS-Book_TM-23_Vol_I.pdf

Schlitzer G (1995) Testing the stationarity of economic time series: further Monte Carlo evidence. Ric Econ 49(2):125–144

Senior KL, Ray JR, Beard RL (2008) Characterization of periodic variations in the GPS satellite clocks. GPS Solut 12(3):211–225. https://doi.org/10.1007/s10291-008-0089-9

Smola AJ, Schölkopf B (2004) A tutorial on support vector regression. Stat Comput 14(3):199–222. https://doi.org/10.1023/B:STCO.0000035301.49549.88

Sneeuw N, Novák P, Crespi M, Sansò F (2012) Analysing time series of GNSS residuals by means of AR (I) MA processes. In: VII Hotine-Marussi symposium on mathematical geodesy, international association of geodesy symposia 137. Springer, Berlin

Teunissen PJG, Khodabandeh A (2015) Review and principles of PPP-RTK methods. J Geod 89(3):217–240

Van Le H, Nishio M (2019) Structural change monitoring of a cable-stayed bridge by time-series modeling of the global thermal deformation acquired by GPS. J Civ Struct Health Monit 9(5):689–701. https://doi.org/10.1007/s13349-019-00360-9

Weber G, Mervart L (2007) The BKG ntrip client (BNC). EUREF symposium 2007, London

Xin J, Zhou J, Yang SX, Li X, Wang Y (2018) Bridge structure deformation prediction based on GNSS data using Kalman-ARIMA-GARCH model. Sens. https://doi.org/10.3390/s18010298

Yang H, Xu C, Gao Y (2019) Analysis of GPS satellite clock prediction performance with different update intervals and application to real-time PPP. Surv Rev 51(364):43–52. https://doi.org/10.1080/00396265.2017.1359473

Ye Q, Szeto WY, Wong SC (2012) Short-term traffic speed forecasting based on data recorded at irregular intervals. IEEE Transact Intell Transp Syst 13(4):1727–1737. https://doi.org/10.1109/TITS.2012.2203122

Ye S, Zhao L, Song J, Chen D, Jiang W (2018) Analysis of estimated satellite clock biases and their effects on precise point positioning. GPS Solut. https://doi.org/10.1007/s10291-017-0680-z

Zumberge JF, Heflin M, Jefferson DC, Watkins M, Webb F (1997) Precise point positioning for the efficient and robust analysis of GPS data from large networks. J Geophys Res. https://doi.org/10.1029/96JB03860

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem