- -

Spatial data infrastructure (SDI) for inventory rockfalls with fragmentation information

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Spatial data infrastructure (SDI) for inventory rockfalls with fragmentation information

Mostrar el registro completo del ítem

Núñez-Andrés, MA.; Lantada Zarzosa, N.; Martínez Llario, JC. (2022). Spatial data infrastructure (SDI) for inventory rockfalls with fragmentation information. Natural Hazards. 112(3):2649-2672. https://doi.org/10.1007/s11069-022-05282-2

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/197846

Ficheros en el ítem

Metadatos del ítem

Título: Spatial data infrastructure (SDI) for inventory rockfalls with fragmentation information
Autor: Núñez-Andrés, M. Amparo Lantada Zarzosa, Nieves Martínez Llario, José Carlos
Entidad UPV: Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería Geodésica, Cartográfica y Topográfica - Escola Tècnica Superior d'Enginyeria Geodèsica, Cartogràfica i Topogràfica
Fecha difusión:
Resumen:
[EN] The fragmentation phenomenon has a significant effect on rockfall risk assessment. This information is difficult to obtain, but it is key to improving rockfall modelling. For this reason, the RockModels team has ...[+]
Palabras clave: Rockfall database , Fragmentation data , SDI , Web mapping
Derechos de uso: Reconocimiento (by)
Fuente:
Natural Hazards. (issn: 0921-030X )
DOI: 10.1007/s11069-022-05282-2
Editorial:
Springer-Verlag
Versión del editor: https://doi.org/10.1007/s11069-022-05282-2
Código del Proyecto:
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-103974RB-I00/ES/AVANCES EN EL ANALISIS DE LA CUANTIFICACION DEL RIESGO (QRA) POR DESPRENDIMIENTOS ROCOSOS EMPLEANDO AVANCES EN LAS TECNICAS GEOMATICAS/
info:eu-repo/grantAgreement/MICINN//BIA2016-75668-P/
info:eu-repo/grantAgreement/MINECO//BIA2013-42582-P/ES/DESPRENDIMIENTOS EN ESCARPES ROCOSOS: CUANTIFICACION DEL RIESGO Y SU PREVENCION/
Agradecimientos:
Most of the data collected were funding by the Project "Rockfalls in cliffs: risk quantification and its prevention (RockRisk)" Ref. BIA2013-42582-P, funded by the Spanish Ministry of Economy and Competitiveness. The RockDB ...[+]
Tipo: Artículo

References

Aye ZC, Olyazadeh R, Derron M-H et al (2017) Learning risk management of geohazards in practice with free and open-source web-GIS based platform: RISKGIS. Nat Hazards Earth Syst Sci Discuss. https://doi.org/10.5194/nhess-2017-85

Blahut J, Poretti I, de Amicis M, Sterlacchini S (2012) Database of geo-hydrological disasters for civil protection purposes. Nat Hazards 60:1065–1083. https://doi.org/10.1007/s11069-011-9893-6

Bobrowsky P (ed) (2013) Encyclopedia of natural hazards. Springer, Netherlands. https://doi.org/10.1007/978-1-4020-4399-4 [+]
Aye ZC, Olyazadeh R, Derron M-H et al (2017) Learning risk management of geohazards in practice with free and open-source web-GIS based platform: RISKGIS. Nat Hazards Earth Syst Sci Discuss. https://doi.org/10.5194/nhess-2017-85

Blahut J, Poretti I, de Amicis M, Sterlacchini S (2012) Database of geo-hydrological disasters for civil protection purposes. Nat Hazards 60:1065–1083. https://doi.org/10.1007/s11069-011-9893-6

Bobrowsky P (ed) (2013) Encyclopedia of natural hazards. Springer, Netherlands. https://doi.org/10.1007/978-1-4020-4399-4

Breunig M, Kuper PV, Butwilowski E et al (2016) The story of DB4GeO–a service-based geo-database architecture to support multi-dimensional data analysis and visualization. ISPRS J Photogramm Remote Sens 117:187–205. https://doi.org/10.1016/j.isprsjprs.2015.12.006

Buill F, Núñez-Andrés MA, Lantada N, Prades A (2016) Comparison of photogrammetric techniques for rockfalls monitoring. IOP Conf Ser Earth Environ Sci. https://doi.org/10.1088/1755-1315/44/4/042023

Coleman DJ, McLaughlin J (1998) Defining global geospatial data infrastructure (ggdi): components, stakeholders and interfaces. Geomatica 52:129–144

Corominas J, Matas G, Ruiz-Carulla R (2019) Quantitative analysis of risk from fragmental rockfalls. Landslides 16(1):5–21. https://doi.org/10.1007/s10346-018-1087-9

Council NR (1999) Reducing disaster losses through better information. The National Academies Press, Washington, DC

European Parliament and of the Council: Directive 2007/2/EC of 14 March 2007 establishing an Infrastructure for Spatial Information in the European Community (INSPIRE). Off. J. European Union L108, 14 (http://inspire.jrc.ec.europa.eu/). Accessed online

Glade T, Anderson M, Crozier M (Eds) (2012) Landslide hazard and risk. John Wiley & Sons, New Jersey. https://doi.org/10.1002/9780470012659

González M, Pinyol J, Ramisa J et al. (2017) La base de datos de movimientos del terreno de Cataluña (LLISCAT): una herramienta para la gestión de los riesgos geológicos. In: X Simposio Nacional sobre Taludes y Laderas Inestables CINME, pp. 651–662

Gröger G, Plümer L (2012) CityGML-interoperable semantic 3D city models. ISPRS J Photogramm Remote Sens 71:12–33. https://doi.org/10.1016/j.isprsjprs.2012.04.004

Harrison M, Thomas F, Barredo J et al (2013) Data specification on natural risk zones-technical guidelines. Report: D2.8.III.12_v3, INSPIRE Data Specification on Natural Risk Zones e Technical Guidelines

Herrera G, Mateos RM, García-Davalillo JC et al (2018) Landslide databases in the geological surveys of Europe. Landslides 15:359–379. https://doi.org/10.1007/s10346-017-0902-z

Herrera G, Mateos RM, Carlos García-Davalillo JC et al (2017) Los movimientos de ladera en España: hacia una base de datos conjunta. In: Alonso E, Corominas J, Hürlimann M (eds) IX Simposio Nacional sobre Taludes y Laderas Inestables, CINME, pp. 663–673

Huabin W, Gangjun L, Weiya X, Gonghui W (2005) GIS-based landslide hazard assessment: an overview. Prog Phys Geogr 29:548–567

ICGC (2022) The geological Atlas of Catalonia. Institut Cartogràfic i Geològic de Catalunya, ICGC. https://www.icgc.cat/en/Citizens/Explore-Catalonia/Atlases/Geological-atlas-of-Catalonia. Accessed 16 January 2022

INSPIRE Thematic Working Group Natural Risk Zones, 2013. Data Specification on natural risk zones. D2.8.III.12, INSPIRE data specification on natural risk zones e technical guidelines. INSPIRE Directive 2007/2/EC. Accessed online. http://inspire.ec.europa.eu/id/document/tg/nz Accessed 7 July 2021

International Organization for Standarization (2006) ISO/TC 211. Geographic information/geomatics. Available online: http://www.isotc211.org Accessed 7 July 2021

Lantada N, Corominas J, Gili J.A, et al (2020) The RockModels project: rockfalls characterization and modelling. EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20353, https://doi.org/10.5194/egusphere-egu2020-20353

Lei T, Zhang Y, Lv Z et al (2019) Landslide inventory mapping from bitemporal images using deep convolutional neural networks. IEEE Geosci Remote Sens Lett 16:982–986. https://doi.org/10.1109/LGRS.2018.2889307

Lv ZY, Shi W, Zhang X, Benediktsson JA (2018) Landslide inventory mapping from bitemporal high-resolution remote sensing images using change detection and multiscale segmentation. IEEE J Sel Top Appl Earth Obs Remote Sens 11:1520–1532. https://doi.org/10.1109/JSTARS.2018.2803784

Matas G, Lantada N, Corominas J et al (2017) RockGIS: a GIS-based model for the analysis of fragmentation in rockfalls. Landslides 14:1565–1578. https://doi.org/10.1007/s10346-017-0818-7

Matas G, Lantada N, Corominas J et al (2020) Simulation of full-scale rockfall tests with a fragmentation model. Geosciences 10(5):168. https://doi.org/10.3390/geosciences10050168

Mather AE, Griffiths JS, Stokes M (2003) Anatomy of a “fossil” landslide from the pleistocene of SE Spain. Geomorphology 50:135–149. https://doi.org/10.1016/S0169-555X(02)00211-8

Minerva Intelligence: Natural Hazard Category Landslide Extension, available online http://minerva.codes/codelist/NaturalHazardCategoryLandslideExtension Accessed 1 July 2021

Molina M, Bayarri S (2011) A multinational SDI-based system to facilitate disaster risk management in the Andean community. Comput Geosci 37:1501–1510. https://doi.org/10.1016/j.cageo.2011.01.015

Napolitano E, Marchesini I, Salvati P et al (2018) LAND-deFeND–an innovative database structure for landslides and floods and their consequences. J Environ Manag 207:203–218. https://doi.org/10.1016/j.jenvman.2017.11.022

Núñez-Andrés MA, Buill F, Puig-Polo C et al (2019) Comparison of several geomatic techniques for rockfall monitoring. In: Joint international symposium on deformation monitoring. pp. 1–7

Núñez-Andrés MA, Iniesto MJ, Ariza FJ et al (2021) Visualizadores IDE. In: Iniesto MJ, Núñez-Andrés MA (ed) Infraestructura de datos espaciales. Instituto Geográfico Nacional, Madrid, pp. 451–458. Doi: https://doi.org/10.7419/162.35.2020. Accessed 17 July 2021.

Open Geospatial Consortium (2006) Web map server implementation specification. https://www.ogc.org/standards/wms. Accessed 7 July 2021.

Open Geospatial Consortium (2007) Styled layer descriptor profile of the web map service. https://www.ogc.org/standards/sld. Accessed 7 July 2021.

Oppikofer T, Nordahl B, Bunkholt H et al (2015) Database and online map service on unstable rock slopes in Norway-from data perpetuation to public information. Geomorphology 249:69–81. https://doi.org/10.1016/j.geomorph.2015.08.005

Pashova L, Bandrova T (2017) A brief overview of current status of European spatial data infrastructures−relevant developments and perspectives for Bulgaria. Geo-Spat Inf Sci 20:97–108. https://doi.org/10.1080/10095020.2017.1323524

Poslončec‐Petrić V, Bačić Ž (2014) Implementing INSPIRE in non‐EU countries based on learned lessons. In: INSPIRE 2014, conference. Aalborg

Reichardt M (2010) Open standards-based geoprocessing web services support the study and management of hazard and risk. Geomat Nat Hazards Risk 1:171–184. https://doi.org/10.1080/19475701003643458

Riquelme A, López-Davalillo JC, Sarro R, et al (2017) Caracterización geomecánica del talud desprendido de Cortes de Pallás (Valencia) mediante structure from Motion (SfM) con imágenes adquiridas con Remotely piloted aircraft system (RPAS). In: Alonso E, Corominas J, Hürlimann M (eds) IX Simposio Nacional sobre Taludes y Laderas Inestables, CINME, pp. 545-556

Roberti G, McGregor J, Lam S et al (2020) INSPIRE standards as a framework for artificial intelligence applications: a landslide example. Nat Hazards Earth Syst Sci 20:3455–3483. https://doi.org/10.5194/nhess-20-3455-2020

Rosser B, Dellow S, Haubrock S, Glassey P (2017) New Zealand’s national landslide database. Landslides 14:1949–1959. https://doi.org/10.1007/s10346-017-0843-6

Ruiz-Carulla R, Corominas J, Mavrouli O (2015) A methodology to obtain the block size distribution of fragmental rockfall deposits. Landslides 12:815–825. https://doi.org/10.1007/s10346-015-0600-7

Ruiz-Carulla R, Corominas J, Mavrouli O (2017) A fractal fragmentation model for rockfalls. Landslides 14:875–889. https://doi.org/10.1007/s10346-016-0773-8

Ruiz-Carulla R, Corominas J (2021) Documenting rock mass failure with UAV during an emergency phase: Castell de Mur case study. In: Miguel Angel C, Luis Felipe PS, Juan M (eds) 13th International Symposium on Landslides. Accessed 15 July 2021

Ruiz-Carulla R (2018) Rockfall analysis: failure, fragmentation and propagation characterization: a fractal fragmentation of rockfalls. Doctoral thesis, UPC, Civil and Environmental Department. http://hdl.handle.net/2117/121044

Saha AK, Gupta RP, Sarkar I et al (2005) An approach for GIS-based statistical landslide susceptibility zonation-with a case study in the Himalayas. Landslides 2:61–69

Saharia M, Jain A, Baishya RR et al (2021) India flood inventory: creation of a multi-source national geospatial database to facilitate comprehensive flood research. Nat Hazards 108:619–633. https://doi.org/10.1007/s11069-021-04698-6

Sarro R, Riquelme A, García-Davalillo JC et al (2018) Rockfall simulation based on UAV photogrammetry data obtained during an emergency declaration: application at a cultural heritage site. Remote Sens 10(12):1923. https://doi.org/10.3390/rs10121923

Spencer JM, Ashley WS (2011) Avalanche fatalities in the western United States: a comparison of three databases. Nat Hazards 58:31–44. https://doi.org/10.1007/s11069-010-9641-3

Spreafico MC, Franci F, Bitelli G, Borgatti L, Ghirotti M (2017) Intact rock bridge breakage and rock mass fragmentation upon failure: quantification using remote sensing techniques. Photogramm Rec 32(160):513–536. https://doi.org/10.1111/phor.12225

Varnes D (1978) Transportation research board special report: slope movement types and processes. In: Schuster RL (ed) Landslides, analysis and control. National Academy of Sciences, Washington D.C., pp 11–33

Wirtz A, Kron W, Löw P, Steuer M (2014) The need for data: natural disasters and the challenges of database management. Nat Hazards 70:135–157. https://doi.org/10.1007/s11069-012-0312-4

Yu M, Yang C, Li Y (2018) Big data in natural disaster management: a review. Geosciences 8(5):165–191. https://doi.org/10.3390/geosciences8050165

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem