- -

Predicting discharge from a complex karst system using the ensemble smoother with multiple data assimilation

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Predicting discharge from a complex karst system using the ensemble smoother with multiple data assimilation

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Pansa, Alessandro es_ES
dc.contributor.author Butera, Ilaria es_ES
dc.contributor.author Gómez-Hernández, J. Jaime es_ES
dc.contributor.author Vigna, Bartolomeo es_ES
dc.date.accessioned 2023-10-19T18:01:45Z
dc.date.available 2023-10-19T18:01:45Z
dc.date.issued 2023-01 es_ES
dc.identifier.issn 1436-3240 es_ES
dc.identifier.uri http://hdl.handle.net/10251/198415
dc.description.abstract [EN] Can the ensemble smoother with multiple data assimilation be used to predict discharge in an Alpine karst aquifer? The answer is yes, at least, for the Bossea aquifer studied. The ensemble smoother is used to fit a unit hydrograph simultaneously with other parameters in a hydrologic model, such as base flow, infiltration coefficient, or snow melting contribution. The fitting uses observed discharge flow rates, daily precipitations, and temperatures to define the model parameters. The data assimilation approach gives excellent results for fitting individual events. After the analysis of 27 such events, two average models are defined to be used to predict flow discharge from precipitation and temperature, one model for prediction during spring (when snow melting has an impact) and another one during autumn, yielding acceptable results, particularly for the fall rainfall events. The lesser performance for the spring events may indicate that the snow melting approximation needs to be revised. The results also show that the parameterization of the infiltration coefficient needs further exploration. Overall, the main conclusion is that the ensemble smoother could be used to define a characteristic "signature" of a karst aquifer to be used in forecast analyses. The reasons for using the ensemble smoother instead of other stochastic approaches are that it is easy to use and explain and provides an estimation of the uncertainty about the predictions. es_ES
dc.description.sponsorship J. Jaime Gomez-Hernandez acknowledges grant PID2019109131RB-I00 funded by MCIN/AEI/10.13039/501100011033. es_ES
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof Stochastic Environmental Research and Risk Assessment es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject.classification INGENIERIA HIDRAULICA es_ES
dc.title Predicting discharge from a complex karst system using the ensemble smoother with multiple data assimilation es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s00477-022-02287-y es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-109131RB-I00/ES/APRENDIZAJE AUTOMATICO PARA HIDROGEOLOGOS FORENSES/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI//PRE2020-093145//APRENDIZAJE AUTOMATICO PARA HIDROGEOLOGOS FORENSES/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros de Caminos, Canales y Puertos - Escola Tècnica Superior d'Enginyers de Camins, Canals i Ports es_ES
dc.description.bibliographicCitation Pansa, A.; Butera, I.; Gómez-Hernández, JJ.; Vigna, B. (2023). Predicting discharge from a complex karst system using the ensemble smoother with multiple data assimilation. Stochastic Environmental Research and Risk Assessment. 37(1):185-201. https://doi.org/10.1007/s00477-022-02287-y es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1007/s00477-022-02287-y es_ES
dc.description.upvformatpinicio 185 es_ES
dc.description.upvformatpfin 201 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 37 es_ES
dc.description.issue 1 es_ES
dc.relation.pasarela S\470143 es_ES
dc.contributor.funder AGENCIA ESTATAL DE INVESTIGACION es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.description.references Anderson JL (2007) An adaptive covariance inflation error correction algorithm for ensemble filters. Tellus A Dyn Meteorol Oceanogr 59:210–224 es_ES
dc.description.references Anderson JL, Anderson SL (1999) A Monte Carlo implementation of the nonlinear filtering problem to produce ensemble assimilations and forecasts. Mon Weather Rev 127:2741–2758 es_ES
dc.description.references Antonellini M, Nannoni A, Vigna B, Waele JD (2019) Structural control on karst water circulation and speleogenesis in a lithological contact zone: the Bossea cave system (Western Alps, Italy). Geomorphology 345:106832 es_ES
dc.description.references Banzato C, Butera I, Revelli R, Vigna B (2017) Reliability of the VESPA index in identifying spring vulnerability level. J Hydrol Eng 22(6):04017008 es_ES
dc.description.references Barnett TP, Adam JC, Lettenmaier DP (2005) Potential impacts of a warming climate on water availability in snow-dominated regions. Nature 438(7066):303–309 es_ES
dc.description.references Bauser HH, Berg D, Klein O, Roth K (2018) Inflation method for ensemble Kalman filter in soil hydrology. Hydrol Earth Syst Sci 22:4921–4934 es_ES
dc.description.references Bittner D, Richieri B, Chiogna G (2021) Unraveling the time-dependent relevance of input model uncertainties for a lumped hydrologic model of a pre-alpine karst system. Hydrogeol J 29(7):2363–2379 es_ES
dc.description.references Butera I, Gómez-Hernández JJ, Nicotra S (2021) Contaminant-source detection in a water distribution system using the ensemble Kalman filter. J Water Resour Plan Manag 147(7):04021029 es_ES
dc.description.references Chen Z, Xu T, Gómez-Hernández JJ, Zanini A (2021) Contaminant spill in a sandbox with non-gaussian conductivities: simultaneous identification by the restart normal-score ensemble Kalman filter. Math Geosci 53(7):1587–1615 es_ES
dc.description.references Civita M, Gregoretti F, Morisi A, Olivero G, Peano G, Vigna B, Villavecchia E, Vittone F (1990) Atti della stazione scientifica di della Grotta di Bossea, vol 23. Gruppo Speleologico Alpi Marittime C.A.I. Cuneo, Savigliano es_ES
dc.description.references Emerick AA (2019) Analysis of geometric selection of the data-error covariance inflation for ES-MDA. J Pet Sci Eng 182:106168 es_ES
dc.description.references Emerick AA, Reynolds AC (2013) Ensemble smoother with multiple data assimilation. Comput Geosci 55:3–15 es_ES
dc.description.references Evensen G (1994) Sequential data assimilation with a nonlinear quasi-geostrophic model using monte Carlo methods to forecast error statistics. J Geophys Res 99(C5):10143 es_ES
dc.description.references Evensen G (2003) The ensemble Kalman filter: theoretical formulation and practical implementation. Ocean Dyn 53(4):343–367 es_ES
dc.description.references Evensen G (2018) Analysis of iterative ensemble smoothers for solving inverse problems. Comput Geosci 22(3):885–908 es_ES
dc.description.references Gassman P, Reyes M, Green C, Arnold J (2007) Soil and water assessment tool: historical development, applications, and future research directions. Trans ASABE 50(4):1211–1250 es_ES
dc.description.references Gómez-Hernández JJ, Xu T (2022) Contaminant source identification in aquifers: a critical view. Math Geosci 54(2):437–458 es_ES
dc.description.references Hartmann A, Goldscheider N, Wagener T, Lange J, Weiler M (2015) Karst water resources in a changing world: review of hydrological modeling approaches. Rev Geophys 22(7):2018–242 es_ES
dc.description.references Jódar J, González-Ramón A, Martos-Rosillo S, Heredia J, Herrera C, Urrutia J, Caballero Y, Zabaleta A, Antigüedad I, Custodio E, Lambán LJ (2020) Snowmelt as a determinant factor in the hydrogeological behaviour of high mountain karst aquifers: the garcés karst system, Central Pyrenees (Spain). Sci Total Environ 748:141363 es_ES
dc.description.references Khaki M, Ait-El-Fquih B, Hoteit I (2020) Calibrating land hydrological models and enhancing their forecasting skills using an ensemble kalman filter with one-step-ahead smoothing. J Hydrol 584:124708 es_ES
dc.description.references Kuichling E (1889) The relation between the rainfall and the discharge of sewers in populous districts. Trans ASCE 20:1–56 es_ES
dc.description.references Li N, McLaughlin D, Kinzelbach W, Li W, Dong X (2015) Using an ensemble smoother to evaluate parameter uncertainty of an integrated hydrological model of Yanqi basin. J Hydrol 529:146–158 es_ES
dc.description.references Liang X, Zheng X, Zhang S, Wu G, Dai Y, Li Y (2012) Maximum likelihood estimation of inflation factors on error covariance matrices for ensemble Kalman filter assimilation. Q J Royal Meteorol Soc 138(662):263–273 es_ES
dc.description.references Lucianetti G, Penna D, Mastrorillo L, Mazza R (2020) The role of snowmelt on the spatio-temporal variability of spring recharge in a dolomitic mountain group, Italian Alps. Water 12(8):2256 es_ES
dc.description.references Nash JE, Sutcliffe JV (1970) River flow forecasting through conceptual models part I—a discussion of principles. J Hydrol 10(3):282–290 es_ES
dc.description.references Oaida CM, Reager JT, Andreadis KM, David CH, Levoe SR, Painter TH, Bormann KJ, Trangsrud AR, Girotto M, Famiglietti JS (2019) A high-resolution data assimilation framework for snow water equivalent estimation across the Western United States and validation with the airborne snow observatory. J Hydrometeorol 20(3):357–378 es_ES
dc.description.references Rafiee J, Reynolds AC (2017) Theoretical and efficient practical procedures for the generation of inflation factors for ES-MDA. Inverse Probl 33(11):115003 es_ES
dc.description.references Sherman L (1932) Stream flow from rainfall by the unit graph method. Engineering News Record 501–502 es_ES
dc.description.references Shokri A, Walker J, van Dijk A, Pauwels V (2018) Performance of different ensemble kalman filter structures to assimilate grace terrestrial water storage estimates into a high-resolution hydrological model: a synthetic study. Water Resour Res 54(11):8931–8951 es_ES
dc.description.references Sun Y, Bao W, Valk K, Brauer CC, Sumihar J, Weerts AH (2020) Improving forecast skill of lowland hydrological models using ensemble Kalman filter and unscented Kalman filter. Water Resour Res 56(8):e2020WR027468 es_ES
dc.description.references Todaro V, D’Oria M, Tanda MG, Gómez-Hernández JJ (2019) Ensemble smoother with multiple data assimilation for reverse flow routing. Comput Geosci 131:32–40 es_ES
dc.description.references Uwamahoro S, Liu T, Nzabarinda V, Habumugisha JM, Habumugisha T, Harerimana B, Bao A (2021) Modifications to snow-melting and flooding processes in the hydrological model—a case study in Issyk-Kul, Kyrgyzstan. Atmosphere 12(12):1580 es_ES
dc.description.references Van Leeuwen PJ, Evensen G (1996) Data assimilation and inverse methods in terms of a probabilistic formulation. Mon Weather Rev 124(12):2898–2913 es_ES
dc.description.references Wang X, Bishop CH (2003) A comparison of breeding and ensemble transform Kalman filter ensemble forecast schemes. J Atmos Sci 60(9):1140–1158 es_ES
dc.description.references White WB (2003) Conceptual models for carbonate aquifers. Speleogenesis 50(2):180–186 es_ES
dc.description.references Xu T, Gómez-Hernández JJ (2016) Joint identification of contaminant source location, initial release time and initial solute concentration in an aquifer via enseble Kalman filtering. Water Resour Res 52(8):6587–6595 es_ES
dc.description.references Xu T, Gómez-Hernández JJ, Zhou H, Li L (2013) The power of transient piezometric head data in inverse modeling: an application of the localized normal-score EnKF with covariance inflation in a heterogenous bimodal hydraulic conductivity field. Adv Water Resour 54:100–118 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem