- -

Contact herbicidal activity optimization of methyl capped polyethylene glycol ester of pelargonic acid

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Contact herbicidal activity optimization of methyl capped polyethylene glycol ester of pelargonic acid

Mostrar el registro completo del ítem

Campos, J.; Mansour, P.; Verdeguer Sancho, MM.; Baur, P. (2023). Contact herbicidal activity optimization of methyl capped polyethylene glycol ester of pelargonic acid. Journal of Plant Diseases and Protection. 130(1):93-103. https://doi.org/10.1007/s41348-022-00661-0

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/199010

Ficheros en el ítem

Metadatos del ítem

Título: Contact herbicidal activity optimization of methyl capped polyethylene glycol ester of pelargonic acid
Autor: Campos, Javier Mansour, Peter Verdeguer Sancho, Mercedes María Baur, Peter
Entidad UPV: Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería Agronómica y del Medio Natural - Escola Tècnica Superior d'Enginyeria Agronòmica i del Medi Natural
Fecha difusión:
Resumen:
[EN] The loss of important contact herbicides like paraquat opens opportunities for more potentially sustainable solutions demanded by consumers and organizations. Frequently, for adequate weed control, the alternatives ...[+]
Palabras clave: Pelargonic acid , Weed canopy , Coverage , Climate conditions , Application parameters
Derechos de uso: Reconocimiento (by)
Fuente:
Journal of Plant Diseases and Protection. (issn: 1861-3829 )
DOI: 10.1007/s41348-022-00661-0
Editorial:
Springer-Verlag
Versión del editor: https://doi.org/10.1007/s41348-022-00661-0
Agradecimientos:
Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature.
Tipo: Artículo

References

Anderson DM, Swanton CJ, Hall JC, Mersey BG (1993) The influence of temperature and relative humidity on the efficacy of glufosinate-ammonium. Weed Res 33:139–147. https://doi.org/10.1111/j.1365-3180.1993.tb01927.x

Barker AV, Prostak RG (2014) Management of vegetation by alternative practices in fields and roadsides. Int J Agron. https://doi.org/10.1155/2014/207828

Baur P (1998) Mechanistic aspects of foliar penetration of agrochemicals and the effect of adjuvants. Recent Res Develop Agric Food Chem 2:809–837 [+]
Anderson DM, Swanton CJ, Hall JC, Mersey BG (1993) The influence of temperature and relative humidity on the efficacy of glufosinate-ammonium. Weed Res 33:139–147. https://doi.org/10.1111/j.1365-3180.1993.tb01927.x

Barker AV, Prostak RG (2014) Management of vegetation by alternative practices in fields and roadsides. Int J Agron. https://doi.org/10.1155/2014/207828

Baur P (1998) Mechanistic aspects of foliar penetration of agrochemicals and the effect of adjuvants. Recent Res Develop Agric Food Chem 2:809–837

Baur P (1999) Surfactant effects on Cuticular penetration of neutral polar compounds: dependence on humidity and temperature. J Agric Food Chem 47:753–761

Baur P, Schönherr J (1997) Penetration of an ethoxylated fatty alcohol surfactant across leaf cuticles as affected by concentration, additives, and humidity. J Plant Dis Prot 104:380–393

Baur P, Pontzen R (2007) Basic features of plant surface wettability and deposit formation and the impact of adjuvants. In: Proceedings of the 8th International Symposium on Adjuvants for Agrochemicals (ISAA), Columbus, Ohio, USA, ISSA Society, Wageningen, p 23

Baur P, Bauer M, Bodelon L, Campos-Cuevas J, Giessler St, Hövelmann F (2019) Fatty acid derivatives for use as herbicides. Patent WO 2019/162484 A1. 2019 August.

Campos J, Verdeguer M, Baur P (2021) Capped polyethylene glycol esters of fatty acids as novel active principles for weed control. Pest Manag Sci 77:4648–4657. https://doi.org/10.1002/ps.6505

Campos J, Bodelon L, Verdeguer M, Baur P (2022) Mechanistic aspects and effects of selected tank-mix partners on herbicidal activity of a novel fatty acid ester. Plants 11:279. https://doi.org/10.3390/plants11030279

Carvalho FP (2017) Pesticides, environment, and food safety. Food Energy Secur 6:48–60. https://doi.org/10.1002/fes3.108

Ciriminna R, Fidalgo A, Ilharco L, Pagliaro M (2019) Herbicides based on pelargonic acid: herbicides of the bioeconomy. Biofuels Bioprod Biorefin 13:1476–1482. https://doi.org/10.1002/bbb.2046

Coleman R, Penner D (2006) Desiccant activity of short chain fatty acids. Weed Technol 20:410–415. https://doi.org/10.1614/WT-05-117R.1

Coleman R, Penner D (2008) Organic acid enhancement of pelargonic acid. Weed Technol 22:38–41. https://doi.org/10.1614/WT-06-195.1

Creech C, Henry R, Werle R, Sandell L, Hewitt A, Kruger G (2015) Performance of postemergence herbicides applied at different carrier volume rates. Weed Technol 29:611–624. https://doi.org/10.1614/WT-D-14-00101.1

Crmaric I, Keller M, Krauss J, Delabays N (2018) Efficacy of natural fatty acid based herbicides on mixed weed stands. Jul Kühn Arch 458:328–333

Bayer CropScience (2019) Integrated weed management–bayer crop science. https://iwm.bayer.com. Accessed 20 April 2019.

Dayan FE, St D (2010) Natural products for weed management in organic Farming in the USA. Outlooks Pest Manag 21:156–160. https://doi.org/10.1564/21aug02

Dayan FE, Watson SB (2011) Plant cell membrane as a marker for light-dependent and light-independent herbicide mechanisms of action. Pestic Biochem Physiol 101:182–190

Dinham B (2004) Why Paraquat should be banned. Outlooks Pest Manag 15:268–271

EPA (2020) U.S. Environmental Protection Agency (EPA), Biopesticides Fact Sheet for Pelargonic Acid; Washington, DC. https://www.epa.gov/ [accessed 12 December 2020]

Eure P, Jordan D, Fisher L, York A (2013) Efficacy of herbicides when spray solution application is delayed. Int J Agron 2013:782486. https://doi.org/10.1155/2013/782486

Eur-Lex (2020) Commission Delegated Regulation (EU) 2020/1068. European Parliament and the Council of the European Union. https://eur-lex.europa.eu/Accessed 12 December 2020.

Fogliatto S, Ferrero A, Vidotto F (2020) Chapter six - current and future scenarios of glyphosate use in Europe: are there alternatives? Adv Agron 163:219–278. https://doi.org/10.1016/bs.agron.2020.05.005

Fukuda M, Fujimori T, Tsujino Y, Wakabayashi K, Böger P (2004) Phytotoxic activity of middle-chain fatty acids I: effects on cell constituents. Pesti Biochem Physiol 80:143–150

Georgieva K, Sárvári E, Keresztes A (2010) Protection of thylakoids against combined light and drought by a lumenal substance in the resurrection plant Haberlea rhodopensis. Ann Bot 105:117–126. https://doi.org/10.1093/aob/mcp274

Jeschke P, Witschel M, Kräamer W, Schirmer U (2019) Modern crop protection compounds, 3rd edn. Wiley-VCH Verlag GmbH, Weinheim, Germany, p 1784

Kanatas P, Travlos I, Papastylianou P, Gazoulis I, Kakabouki I, Tsekoura A (2020) Yield, quality and weed control in soybean crop as affected by several cultural and weed management practices. Not Bot Hort Agrobot 48:329–341. https://doi.org/10.15835/nbha48111823

Kanatas P, Antonopoulos N, Gazoulis I, Travlos IS (2021) Screening glyphosate-alternative weed control options in important perennial crops. Weed Sci 69:704–718. https://doi.org/10.1017/wsc.2021.55

Kleffmann group (2021). AMIS AgriGlobe database. https://kleffmann4you.kleffmann.com Accessed 08 December 2021

Knoche M (1994) Effect of droplet size and carrier volume on performance of foliage-applied herbicides. Crop Prot 13:163–178. https://doi.org/10.1016/0261-2194(94)90075-2

Kraehmer H, Baur P (2013) Weed anatomy. John Wiley & Sons Ltd, West Sussex

Krauss J, Eigenmann M, Keller M (2020) Pelargonic acid for weed control in onions: factors affecting selectivity. Jul Kühn Arch 464:415–419

Kudsk P, Kristensen JL (1992) Effect of environmental factors on herbicide performance. In: Proceedings of the first international weed control congress. Victoria, Australia: Weed Science Society of Victoria, p 173–186.

Larcher W (2003) Physiological plant. Ecology: ecophysiology and stress physiology of functional groups, 4th edn. Springer-Verlag, Berlin Heidelberg, p 514

Lederer B, Fujimori T, Tsujino Y, Wakabayashi K, Böger P (2004) Phytotoxic activity of middle-chain fatty acids II: peroxidation and membrane effects. Pesti Biochem Physiol 80:151–156. https://doi.org/10.1016/j.pestbp.2004.06.010

Marrone PG (2019) Pesticidal natural products – status and future potential. Pest Manag Sci 75:2325–2340. https://doi.org/10.1002/ps.5433

Muñoz M, Torres-Pagán N, Peiró R, Guijarro R, Sánchez-Moreiras AM, Verdeguer M (2020) Phytotoxic effects of three natural compounds: pelargonic acid, carvacrol, and cinnamic aldehyde, against problematic weeds in mediterranean crops. Agronomy 10:791. https://doi.org/10.3390/agronomy10060791

Peterson M, McMaster S, Riechers D, Skelton J, Stahlman P (2016) 2,4-D Past, present, and future: a review. Weed Technol 30:303–345. https://doi.org/10.1614/WT-D-15-00131.1

Pintar A, Svečnjak Z, Šoštarčić V, Lakić J, Barić K, Brzoja D, Šćepanović M (2021) Growth stage of Alopecurus myosuroides Huds. determines the efficacy of Pinoxaden. Plants 10:732. https://doi.org/10.3390/plants10040732

de Ruiter H, Nijhuis E, Uffing AJM, Withagen JCM (1999) Phytotoxicity of different classes of adjuvants. AB-DLO. 609. https://edepot.wur.nl/339810

Ruiz-Santaella J, Heredia A, Prado RD (2006) Basis of selectivity of cyhalofop-butyl in Oryza sativa L. Planta 223:191–199. https://doi.org/10.1007/s00425-005-0075-1

Schönherr J, Baur P (1994) Modelling penetration of plant cuticles by crop protection agents and effects of adjuvants on their rates of penetration. Pestic Sci 42:185–208

Travlos I, Rapti E, Gazoulis I, Kanatas P, Tataridas A, Kakabouki I, Papastylianou P (2020) The herbicidal potential of different pelargonic acid products and essential oils against several important weed species. Agronomy 10:1687. https://doi.org/10.3390/agronomy10111687

Van Bruggen AHC, He MM, Shin K, Mai V, Jeong KC, Finckh MR, Morris JG (2018) Environmental and health effects of the herbicide glyphosate. Sci Total Environ 616–617:255–268. https://doi.org/10.1016/j.scitotenv.2017.10.309

Webber CL, Taylor MJ, Shrefler JW (2014) Weed control in sweet bell pepper using sequential postdirected applications of pelargonic acid. HortTechnology 24:663–667. https://doi.org/10.21273/HORTTECH.24.6.663

Webber CL, Shrefler JW (2006) Pelargonic acid weed control parameters. In: 103rd Annual International Conference of the American Society for Horticultural Science, New Orleans, LA, US, Hortscience, p 1034.

Zimdahl R (2018) Fundamentals of weed science, 5th edn. Academic Press, London, p 758

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem