- -

From concept to validation of a wireless environmental sensor for the integral application of preventive conservation methodologies in low-budget museums

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

From concept to validation of a wireless environmental sensor for the integral application of preventive conservation methodologies in low-budget museums

Mostrar el registro completo del ítem

Laborda, J.; García-Castillo, AM.; Mercado Romero, R.; Peiró-Vitoria, A.; Perles, A. (2022). From concept to validation of a wireless environmental sensor for the integral application of preventive conservation methodologies in low-budget museums. Heritage Science. 10(1):1-17. https://doi.org/10.1186/s40494-022-00837-9

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/199077

Ficheros en el ítem

Metadatos del ítem

Título: From concept to validation of a wireless environmental sensor for the integral application of preventive conservation methodologies in low-budget museums
Autor: Laborda, Jaime García-Castillo, Ana María Mercado Romero, Ricardo Peiró-Vitoria, Andrea Perles, Angel
Entidad UPV: Universitat Politècnica de València. Facultad de Bellas Artes - Facultat de Belles Arts
Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería del Diseño - Escola Tècnica Superior d'Enginyeria del Disseny
Fecha difusión:
Resumen:
[EN] The effective implementation of preventive conservation strategies requires tools to continuously measure the environmental conditions to which the cultural objects are exposed. In this sense, the European Horizon ...[+]
Palabras clave: Cultural heritage , Preventive conservation , Indoor microclimate , Real-time monitoring , Sensors,Wireless , Internet of things
Derechos de uso: Reconocimiento (by)
Fuente:
Heritage Science. (eissn: 2050-7445 )
DOI: 10.1186/s40494-022-00837-9
Editorial:
BioMed Central
Versión del editor: https://doi.org/10.1186/s40494-022-00837-9
Código del Proyecto:
info:eu-repo/grantAgreement/EC/H2020/814624/EU
Agradecimientos:
This research was funded by the European Union's Horizon 2020 research and innovation programme under Grant agreement No.814624.
Tipo: Artículo

References

Padfield T. How to keep for a while what you want to keep forever. Lecture notes for the museology course at Denmark’s Library School. Denmark. 2005. https://www.conservationphysics.org/phdk/phdk_tp.pdf

Lucchi E. Review of preventive conservation in museum buildings. J Cult Herit. 2018;1(29):180–93.

Avrami E, Dardes K, de la Torre M, Harris SY, Henry M, Jessup WC. The conservation assessment: a proposed model for evaluating museum environmental management needs. Los Angeles, CA, USA: The Getty Conservation Institute; 1999. [+]
Padfield T. How to keep for a while what you want to keep forever. Lecture notes for the museology course at Denmark’s Library School. Denmark. 2005. https://www.conservationphysics.org/phdk/phdk_tp.pdf

Lucchi E. Review of preventive conservation in museum buildings. J Cult Herit. 2018;1(29):180–93.

Avrami E, Dardes K, de la Torre M, Harris SY, Henry M, Jessup WC. The conservation assessment: a proposed model for evaluating museum environmental management needs. Los Angeles, CA, USA: The Getty Conservation Institute; 1999.

Cassar M. Environmental management: guidelines for museums and galleries. London: Routledge; 2013.

Graham-Bell M. Preventive conservation: a manual. British Columbia Museums Association. Victoria; 1986.

ICCROM (International Centre for the Study of Preservation and Restoration of Cultural Property), teamwork for preventive conservation, ICCROM, Roma; 2004.

Michalski S, Grattan D. Environmental guidelines for museums. Ottawa, ON, Canada: Canadian Conservation Institute; 2010.

Camuffo D. Microclimate for cultural heritage. Amsterdam: Elsevier; 1998.

Corgnati SP, Fabi V, Filippi M. A methodology for microclimatic quality evaluation in museums: application to a temporary exhibit. Build Environ. 2009;44(6):1253–60.

Padfield T, Borchersen K. Museum microclimates. Copenhagen: The National Museum of Denmark; 2007.

American Society of heating refrigerating and air-conditioning engineers. Museums, galleries, archives, and libraries, in ASHRAE Handbook HVAC Applications. Atlanta: ASHRAE; 2019. p. 24.1-24.46.

EN 15758. Conservation of cultural property. Procedures and instruments for measuring temperatures of the air and the surfaces of objects. Brussels: European Committee for Standardisation; 2010.

EN16242. Conservation of cultural heritage. Procedures and instruments for measuring humidity in the air and moisture exchanges between air and cultural property. Brussels: European Committee for Standardisation; 2012.

EN 15757. CEN. Conservation of cultural property–specifications for temperature and relative humidity to limit climate-induced mechanical damage in organic hygroscopic materials. Brussels: European Committee for Standardisation; 2010.

EN 16893. Conservation of cultural heritage—specifications for location, construction and modification of buildings or rooms intended for the storage or use of heritage collections. Brussels: European Committee for Standardisation; 2018.

EN 12464–1. Light and lighting-lighting of work places, Part 1: Indoor work places. Comité Européen de Normalisation. Brussels: European Committee for Standardisation; 2002.

EN 16163. Conservation of cultural heritage–guidelines and procedures for choosing appropriate lighting for indoor exhibitions. Brussels: European Committee for Standardisation; 2014.

ICOM (International Council of Museums), ICOM Statutes, Vienna: ICOM; 2007.

International Council on Monuments and Sites (ICOMOS). International charter for the conservation and restoration of monuments and sites (The Venice Charter). In proceedings of the IInd international congress of architects and technicians of historic monuments, Venice, Italy, 25–31 May 1964.

Lucchi E. Simplified assessment method for environmental and energy quality in museum buildings. Energy Build. 2016;1(117):216–29.

Cassar M. Museums environment energy. Richmond: Her Majesty’s Stationery Office; 1994.

Brophy SS, Wylie E. The green museum: a primer on environmental practice. Lanham: Altamira press; 2013.

Ankersmit B, Stappers MHL. Managing indoor climate risks in museums. Basel, Switzerland: Springer; 2016.

Lucchi E. Environmental risk management for museums in historic buildings through an innovative approach: a case study of the Pinacoteca di Brera in Milan (Italy). Sustainability. 2020;12(12):5155.

ICCROM. Preventive Conservation. Our approach. 2020. https://www.iccrom.org/projects/preventive-conservation. Accessed 8 Oct 2022

Silva HE, Henriques FM, Henriques TA, Coelho G. A sequential process to assess and optimize the indoor climate in museums. Build Environ. 2016;1(104):21–34.

Marcu F, Hodor N, Indrie L, Dejeu P, Ilieș M, Albu A, Sandor M, Sicora C, Costea M, Ilieș DC, Caciora T. Microbiological, health and comfort aspects of indoor air quality in a Romanian historical wooden church. Int J Environ Res Public Health. 2021;18(18):9908.

Ilieș DC, Hodor N, Indrie L, Dejeu P, Ilieș A, Albu A, Caciora T, Ilieș M, Barbu-Tudoran L, Grama V. Investigations of the surface of heritage objects and green bioremediation: case study of artefacts from Maramureş, Romania. Appl Sci. 2021;11(14):6643.

García-Diego FJ, Zarzo M. Microclimate monitoring by multivariate statistical control: the renaissance frescoes of the Cathedral of Valencia (Spain). J Cult Herit. 2010;11(3):339–44.

Zarzo M, Fernández-Navajas A, García-Diego FJ. Long-term monitoring of fresco paintings in the Cathedral of Valencia (Spain) through humidity and temperature sensors in various locations for preventive conservation. Sensors. 2011;11(9):8685–710.

Visco G, Plattner SH, Fortini P, Sammartino M. A multivariate approach for a comparison of big data matrices. Case study: thermo-hygrometric monitoring inside the Carcer Tullianum (Rome) in the absence and in the presence of visitors. Environ Sci Pollut Res. 2017;24(16):13990–4004.

Carcangiu G, Casti M, Desogus G, Meloni P, Ricciu R. Microclimatic monitoring of a semi-confined archaeological site affected by salt crystallisation. J Cult Herit. 2015;16(1):113–8.

Gubbi J, Buyya R, Marusic S, Palaniswami M. Internet of Things (IoT): a vision, architectural elements, and future directions. Futur Gener Comput Syst. 2013;29(7):1645–60.

Gershenfeld N, Krikorian R, Cohen D. The internet of things. Sci Am. 2004;291(4):76–81.

Guzmán PC, Roders AP, Colenbrander BJ. Measuring links between cultural heritage management and sustainable urban development: an overview of global monitoring tools. Cities. 2017;1(60):192–201.

Mesas-Carrascosa FJ, Verdú Santano D, Meroño de Larriva JE, Ortíz Cordero R, Hidalgo Fernández RE, García-Ferrer A. Monitoring heritage buildings with open source hardware sensors: a case study of the mosque-cathedral of Córdoba. Sensors. 2016;16(10):1620.

Aparicio S, Martínez-Garrido MI, Ranz J, Fort R, Izquierdo MÁ. Routing topologies of wireless sensor networks for health monitoring of a cultural heritage site. Sensors. 2016;16(10):1732.

Mecocci A, Abrardo A. Monitoring architectural heritage by wireless sensors networks: San Gimignano—a case study. Sensors. 2014;14(1):770–8.

Perles A, Mercado R, Capella JV, Serrano JJ. Ultra-Low power optical sensor for xylophagous insect detection in wood. Sensors. 2016;16(11):1977.

Lucchi E, Dias Pereira L, Andreotti M, Malaguti R, Cennamo D, Calzolari M, Frighi V. Development of a compatible, low cost and high accurate conservation remote sensing technology for the hygrothermal assessment of historic walls. Electronics. 2019;8(6):643.

Agbota H, Mitchell John E, Odlyha M, Strlič M. Remote assessment of cultural heritage environments with wireless sensor array networks. Sensors. 2014;14(5):8779–93.

Klein LJ, Bermudez SA, Schrott AG, Tsukada M, Dionisi-Vici P, Kargere L, Marianno F, Hamann HF, López V, Leona M. Wireless sensor platform for cultural heritage monitoring and modeling system. Sensors. 2017;17(9):1998.

Perles A, Pérez-Marín E, Mercado R, Segrelles JD, Blanquer I, Zarzo M, Garcia-Diego FJ. An energy-efficient internet of things (IoT) architecture for preventive conservation of cultural heritage. Futur Gener Comput Syst. 2018;1(81):566–81.

European H2020 CollectionCare project. 2019. https://www.collectioncare.eu/. Accessed 8 Oct 2022

Perles A, Fuster-López L, García-Diego FJ, Peiró-Vitoria A, García-Castillo AM, Andersen CK, Bosco E, Mavrikas E, Pariente T. CollectionCare: an affordable service for the preventive conservation monitoring of single cultural artefacts during display, storage, handling and transport. IOP Conf Ser Mater Sci Eng. 2020;949(1):012026.

The Athens Charter for the Restoration of Historic Monuments. First International Congress of Architects and Technicians of Historic Monument. Athens,1931. Available at https://www.icomos.org/en/167-the-athens-charter-for-the-restoration-of-historic-monuments. Accessed 17 Nov 2022.

Michalski S. The ideal climate, risk management, the ASHRAE chapter, proofed fluctuations, and towards a full risk analysis model. Experts roundtable on sustainable climate management strategies. Tenerife, Spain, 1-9 Apr 2007.

Thomson G. The museum environment. London: Routledge; 2018.

Blades N, Oreszczyn T, Cassar M, Bordass W. Guidelines on pollution control in museum buildings. London: Museums Association; 2000.

Tétreault J. Airborne pollutants in museums, galleries and archives: risk assessment, control strategies and preservation management. Ottawa: Canadian Conservation Institute; 2003.

Thickett D, Lee LR. Selection of materials for the storage or display of museum objects. London: British Museum; 2004.

Lattuati-Derieux A, Egasse C, Thao-Heu S, Balcar N, Barabant G, Lavédrine B. What do plastics emit? HS-SPME-GC/MS analyses of new standard plastics and plastic objects in museum collections. J Cult Herit. 2013;14(3):238–47.

Mitchell G, Higgitt C, Gibson LT. Emissions from polymeric materials: characterised by thermal desorption-gas chromatography. Polym Degrad Stab. 2014;1(107):328–40.

Morris BA. The science and technology of flexible packaging: multilayer films from resin and process to end use. Norwich: William Andrew; 2022.

Raffler S, Bichlmair S, Kilian R. Mounting of sensors on surfaces in historic buildings. Energy Build. 2015;15(95):92–7.

ISO/IEC guide 98–3. International Organisation for Standardisation. Uncertainty of measurement-Part 3: Guide to the expression of uncertainty in measurement (GUM: 1995). ISO; 2008.

Grafana: The open observability platform. 2022. https://grafana.com/. Accessed 8 Oct 2022

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem