- -

From concept to validation of a wireless environmental sensor for the integral application of preventive conservation methodologies in low-budget museums

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

From concept to validation of a wireless environmental sensor for the integral application of preventive conservation methodologies in low-budget museums

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Laborda, Jaime es_ES
dc.contributor.author García-Castillo, Ana María es_ES
dc.contributor.author Mercado Romero, Ricardo es_ES
dc.contributor.author Peiró-Vitoria, Andrea es_ES
dc.contributor.author Perles, Angel es_ES
dc.date.accessioned 2023-10-31T19:01:37Z
dc.date.available 2023-10-31T19:01:37Z
dc.date.issued 2022-12-13 es_ES
dc.identifier.uri http://hdl.handle.net/10251/199077
dc.description.abstract [EN] The effective implementation of preventive conservation strategies requires tools to continuously measure the environmental conditions to which the cultural objects are exposed. In this sense, the European Horizon 2020 project CollectionCare aims to provide an affordable preventive conservation service for individual objects focused to small museums with limited budgets. Although the use of data loggers has been a must in the past, new deployments tend to use wired and wireless sensors that provide real-time information and the ability to instantly analyse the data, allowing immediate action to be taken in the event of a threat towards a cultural object. For already constructed buildings, wireless systems have the advantage that, a priori, deployments are simpler, faster and cheaper, but have to deal with complex heritage environments with long distances to be covered and very thick walls to cross. In many cases, commercial systems of this type are not economically viable for small museums with limited budgets. Moreover, conservators who try to approach such solutions are often overwhelmed by unclear technical specifications that do not allow them to determine whether the solution fits their environment or not, giving rise to great frustration. Among others, the CollectionCare includes the design of a specific low-cost wireless sensor, being the aim of this article to present to both technical and non-technical readers, the design choices made regarding the housing, attachment method, power source, wireless transmission technique and selection of the environmental sensors following European standards. Also, the effective implementation of the device in three stages to prove the concep until to get a near-production version is presented. The developed device has been deployed in museums in Belgium, Italy, Greece, Latvia, Denmark and Spain, and the validation results are presented, showing that it is feasible to have a cost-effective proposal that it is easy to install and configure and can operate for 10 years without the need for maintenance or battery replacement except if it is needed to comply with annual recalibration if standards such as ISO 11799:2015 are required. es_ES
dc.description.sponsorship This research was funded by the European Union's Horizon 2020 research and innovation programme under Grant agreement No.814624. es_ES
dc.language Inglés es_ES
dc.publisher BioMed Central es_ES
dc.relation.ispartof Heritage Science es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Cultural heritage es_ES
dc.subject Preventive conservation es_ES
dc.subject Indoor microclimate es_ES
dc.subject Real-time monitoring es_ES
dc.subject Sensors,Wireless es_ES
dc.subject Internet of things es_ES
dc.subject.classification DIBUJO es_ES
dc.subject.classification ARQUITECTURA Y TECNOLOGIA DE COMPUTADORES es_ES
dc.title From concept to validation of a wireless environmental sensor for the integral application of preventive conservation methodologies in low-budget museums es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1186/s40494-022-00837-9 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/814624/EU es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Facultad de Bellas Artes - Facultat de Belles Arts es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería del Diseño - Escola Tècnica Superior d'Enginyeria del Disseny es_ES
dc.description.bibliographicCitation Laborda, J.; García-Castillo, AM.; Mercado Romero, R.; Peiró-Vitoria, A.; Perles, A. (2022). From concept to validation of a wireless environmental sensor for the integral application of preventive conservation methodologies in low-budget museums. Heritage Science. 10(1):1-17. https://doi.org/10.1186/s40494-022-00837-9 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1186/s40494-022-00837-9 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 17 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 10 es_ES
dc.description.issue 1 es_ES
dc.identifier.eissn 2050-7445 es_ES
dc.relation.pasarela S\488826 es_ES
dc.contributor.funder COMISION DE LAS COMUNIDADES EUROPEA es_ES
dc.description.references Padfield T. How to keep for a while what you want to keep forever. Lecture notes for the museology course at Denmark’s Library School. Denmark. 2005. https://www.conservationphysics.org/phdk/phdk_tp.pdf es_ES
dc.description.references Lucchi E. Review of preventive conservation in museum buildings. J Cult Herit. 2018;1(29):180–93. es_ES
dc.description.references Avrami E, Dardes K, de la Torre M, Harris SY, Henry M, Jessup WC. The conservation assessment: a proposed model for evaluating museum environmental management needs. Los Angeles, CA, USA: The Getty Conservation Institute; 1999. es_ES
dc.description.references Cassar M. Environmental management: guidelines for museums and galleries. London: Routledge; 2013. es_ES
dc.description.references Graham-Bell M. Preventive conservation: a manual. British Columbia Museums Association. Victoria; 1986. es_ES
dc.description.references ICCROM (International Centre for the Study of Preservation and Restoration of Cultural Property), teamwork for preventive conservation, ICCROM, Roma; 2004. es_ES
dc.description.references Michalski S, Grattan D. Environmental guidelines for museums. Ottawa, ON, Canada: Canadian Conservation Institute; 2010. es_ES
dc.description.references Camuffo D. Microclimate for cultural heritage. Amsterdam: Elsevier; 1998. es_ES
dc.description.references Corgnati SP, Fabi V, Filippi M. A methodology for microclimatic quality evaluation in museums: application to a temporary exhibit. Build Environ. 2009;44(6):1253–60. es_ES
dc.description.references Padfield T, Borchersen K. Museum microclimates. Copenhagen: The National Museum of Denmark; 2007. es_ES
dc.description.references American Society of heating refrigerating and air-conditioning engineers. Museums, galleries, archives, and libraries, in ASHRAE Handbook HVAC Applications. Atlanta: ASHRAE; 2019. p. 24.1-24.46. es_ES
dc.description.references EN 15758. Conservation of cultural property. Procedures and instruments for measuring temperatures of the air and the surfaces of objects. Brussels: European Committee for Standardisation; 2010. es_ES
dc.description.references EN16242. Conservation of cultural heritage. Procedures and instruments for measuring humidity in the air and moisture exchanges between air and cultural property. Brussels: European Committee for Standardisation; 2012. es_ES
dc.description.references EN 15757. CEN. Conservation of cultural property–specifications for temperature and relative humidity to limit climate-induced mechanical damage in organic hygroscopic materials. Brussels: European Committee for Standardisation; 2010. es_ES
dc.description.references EN 16893. Conservation of cultural heritage—specifications for location, construction and modification of buildings or rooms intended for the storage or use of heritage collections. Brussels: European Committee for Standardisation; 2018. es_ES
dc.description.references EN 12464–1. Light and lighting-lighting of work places, Part 1: Indoor work places. Comité Européen de Normalisation. Brussels: European Committee for Standardisation; 2002. es_ES
dc.description.references EN 16163. Conservation of cultural heritage–guidelines and procedures for choosing appropriate lighting for indoor exhibitions. Brussels: European Committee for Standardisation; 2014. es_ES
dc.description.references ICOM (International Council of Museums), ICOM Statutes, Vienna: ICOM; 2007. es_ES
dc.description.references International Council on Monuments and Sites (ICOMOS). International charter for the conservation and restoration of monuments and sites (The Venice Charter). In proceedings of the IInd international congress of architects and technicians of historic monuments, Venice, Italy, 25–31 May 1964. es_ES
dc.description.references Lucchi E. Simplified assessment method for environmental and energy quality in museum buildings. Energy Build. 2016;1(117):216–29. es_ES
dc.description.references Cassar M. Museums environment energy. Richmond: Her Majesty’s Stationery Office; 1994. es_ES
dc.description.references Brophy SS, Wylie E. The green museum: a primer on environmental practice. Lanham: Altamira press; 2013. es_ES
dc.description.references Ankersmit B, Stappers MHL. Managing indoor climate risks in museums. Basel, Switzerland: Springer; 2016. es_ES
dc.description.references Lucchi E. Environmental risk management for museums in historic buildings through an innovative approach: a case study of the Pinacoteca di Brera in Milan (Italy). Sustainability. 2020;12(12):5155. es_ES
dc.description.references ICCROM. Preventive Conservation. Our approach. 2020. https://www.iccrom.org/projects/preventive-conservation. Accessed 8 Oct 2022 es_ES
dc.description.references Silva HE, Henriques FM, Henriques TA, Coelho G. A sequential process to assess and optimize the indoor climate in museums. Build Environ. 2016;1(104):21–34. es_ES
dc.description.references Marcu F, Hodor N, Indrie L, Dejeu P, Ilieș M, Albu A, Sandor M, Sicora C, Costea M, Ilieș DC, Caciora T. Microbiological, health and comfort aspects of indoor air quality in a Romanian historical wooden church. Int J Environ Res Public Health. 2021;18(18):9908. es_ES
dc.description.references Ilieș DC, Hodor N, Indrie L, Dejeu P, Ilieș A, Albu A, Caciora T, Ilieș M, Barbu-Tudoran L, Grama V. Investigations of the surface of heritage objects and green bioremediation: case study of artefacts from Maramureş, Romania. Appl Sci. 2021;11(14):6643. es_ES
dc.description.references García-Diego FJ, Zarzo M. Microclimate monitoring by multivariate statistical control: the renaissance frescoes of the Cathedral of Valencia (Spain). J Cult Herit. 2010;11(3):339–44. es_ES
dc.description.references Zarzo M, Fernández-Navajas A, García-Diego FJ. Long-term monitoring of fresco paintings in the Cathedral of Valencia (Spain) through humidity and temperature sensors in various locations for preventive conservation. Sensors. 2011;11(9):8685–710. es_ES
dc.description.references Visco G, Plattner SH, Fortini P, Sammartino M. A multivariate approach for a comparison of big data matrices. Case study: thermo-hygrometric monitoring inside the Carcer Tullianum (Rome) in the absence and in the presence of visitors. Environ Sci Pollut Res. 2017;24(16):13990–4004. es_ES
dc.description.references Carcangiu G, Casti M, Desogus G, Meloni P, Ricciu R. Microclimatic monitoring of a semi-confined archaeological site affected by salt crystallisation. J Cult Herit. 2015;16(1):113–8. es_ES
dc.description.references Gubbi J, Buyya R, Marusic S, Palaniswami M. Internet of Things (IoT): a vision, architectural elements, and future directions. Futur Gener Comput Syst. 2013;29(7):1645–60. es_ES
dc.description.references Gershenfeld N, Krikorian R, Cohen D. The internet of things. Sci Am. 2004;291(4):76–81. es_ES
dc.description.references Guzmán PC, Roders AP, Colenbrander BJ. Measuring links between cultural heritage management and sustainable urban development: an overview of global monitoring tools. Cities. 2017;1(60):192–201. es_ES
dc.description.references Mesas-Carrascosa FJ, Verdú Santano D, Meroño de Larriva JE, Ortíz Cordero R, Hidalgo Fernández RE, García-Ferrer A. Monitoring heritage buildings with open source hardware sensors: a case study of the mosque-cathedral of Córdoba. Sensors. 2016;16(10):1620. es_ES
dc.description.references Aparicio S, Martínez-Garrido MI, Ranz J, Fort R, Izquierdo MÁ. Routing topologies of wireless sensor networks for health monitoring of a cultural heritage site. Sensors. 2016;16(10):1732. es_ES
dc.description.references Mecocci A, Abrardo A. Monitoring architectural heritage by wireless sensors networks: San Gimignano—a case study. Sensors. 2014;14(1):770–8. es_ES
dc.description.references Perles A, Mercado R, Capella JV, Serrano JJ. Ultra-Low power optical sensor for xylophagous insect detection in wood. Sensors. 2016;16(11):1977. es_ES
dc.description.references Lucchi E, Dias Pereira L, Andreotti M, Malaguti R, Cennamo D, Calzolari M, Frighi V. Development of a compatible, low cost and high accurate conservation remote sensing technology for the hygrothermal assessment of historic walls. Electronics. 2019;8(6):643. es_ES
dc.description.references Agbota H, Mitchell John E, Odlyha M, Strlič M. Remote assessment of cultural heritage environments with wireless sensor array networks. Sensors. 2014;14(5):8779–93. es_ES
dc.description.references Klein LJ, Bermudez SA, Schrott AG, Tsukada M, Dionisi-Vici P, Kargere L, Marianno F, Hamann HF, López V, Leona M. Wireless sensor platform for cultural heritage monitoring and modeling system. Sensors. 2017;17(9):1998. es_ES
dc.description.references Perles A, Pérez-Marín E, Mercado R, Segrelles JD, Blanquer I, Zarzo M, Garcia-Diego FJ. An energy-efficient internet of things (IoT) architecture for preventive conservation of cultural heritage. Futur Gener Comput Syst. 2018;1(81):566–81. es_ES
dc.description.references European H2020 CollectionCare project. 2019. https://www.collectioncare.eu/. Accessed 8 Oct 2022 es_ES
dc.description.references Perles A, Fuster-López L, García-Diego FJ, Peiró-Vitoria A, García-Castillo AM, Andersen CK, Bosco E, Mavrikas E, Pariente T. CollectionCare: an affordable service for the preventive conservation monitoring of single cultural artefacts during display, storage, handling and transport. IOP Conf Ser Mater Sci Eng. 2020;949(1):012026. es_ES
dc.description.references The Athens Charter for the Restoration of Historic Monuments. First International Congress of Architects and Technicians of Historic Monument. Athens,1931. Available at https://www.icomos.org/en/167-the-athens-charter-for-the-restoration-of-historic-monuments. Accessed 17 Nov 2022. es_ES
dc.description.references Michalski S. The ideal climate, risk management, the ASHRAE chapter, proofed fluctuations, and towards a full risk analysis model. Experts roundtable on sustainable climate management strategies. Tenerife, Spain, 1-9 Apr 2007. es_ES
dc.description.references Thomson G. The museum environment. London: Routledge; 2018. es_ES
dc.description.references Blades N, Oreszczyn T, Cassar M, Bordass W. Guidelines on pollution control in museum buildings. London: Museums Association; 2000. es_ES
dc.description.references Tétreault J. Airborne pollutants in museums, galleries and archives: risk assessment, control strategies and preservation management. Ottawa: Canadian Conservation Institute; 2003. es_ES
dc.description.references Thickett D, Lee LR. Selection of materials for the storage or display of museum objects. London: British Museum; 2004. es_ES
dc.description.references Lattuati-Derieux A, Egasse C, Thao-Heu S, Balcar N, Barabant G, Lavédrine B. What do plastics emit? HS-SPME-GC/MS analyses of new standard plastics and plastic objects in museum collections. J Cult Herit. 2013;14(3):238–47. es_ES
dc.description.references Mitchell G, Higgitt C, Gibson LT. Emissions from polymeric materials: characterised by thermal desorption-gas chromatography. Polym Degrad Stab. 2014;1(107):328–40. es_ES
dc.description.references Morris BA. The science and technology of flexible packaging: multilayer films from resin and process to end use. Norwich: William Andrew; 2022. es_ES
dc.description.references Raffler S, Bichlmair S, Kilian R. Mounting of sensors on surfaces in historic buildings. Energy Build. 2015;15(95):92–7. es_ES
dc.description.references ISO/IEC guide 98–3. International Organisation for Standardisation. Uncertainty of measurement-Part 3: Guide to the expression of uncertainty in measurement (GUM: 1995). ISO; 2008. es_ES
dc.description.references Grafana: The open observability platform. 2022. https://grafana.com/. Accessed 8 Oct 2022 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem