- -

Tratamiento sustentable de agua residual urbana mediante un humedal construido acoplado con una celda de combustible microbiana

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Tratamiento sustentable de agua residual urbana mediante un humedal construido acoplado con una celda de combustible microbiana

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Modini, Laura es_ES
dc.contributor.author Pizarro, Ana es_ES
dc.contributor.author Zerbatto, Mariel es_ES
dc.date.accessioned 2023-11-06T12:04:25Z
dc.date.available 2023-11-06T12:04:25Z
dc.date.issued 2023-10-31
dc.identifier.issn 1134-2196
dc.identifier.uri http://hdl.handle.net/10251/199284
dc.description.abstract [EN] The efficiency of a constructed wetland coupled with a microbial fuel cell (CW-MFC), at a micropilot scale, was evaluated to treat real urban wastewater (UWW) and generate electricity by action of electroactive bacteria that oxidize organic matter. For this purpose, a vertical up-flow wetland was constructed and 2 graphite electrodes connected to an external 1000-ohm resistor were attached to it. CW-MFC was continuously fed with settled UWW for 4 months. The hydraulic residence time was 1.2 d. The quality of the influent UWW and the treated effluent was evaluated weekly. The voltage produced was recorded every 10 min. The average removal efficiencies achieved were 95.8 % turbidity, 77.5 % COD, 75.7 % total suspended solids, and 96.1 % E. coli, 5.7 % total reactive phosphorus and 18.3 % ammonium. CW-MFC produced electricity continuously, with yields of up to 30.5 W·h/kg COD removed. es_ES
dc.description.abstract [ES] Se evaluó la eficiencia de un humedal construido acoplado con una celda de combustible microbiana (HC-CCM), a escala micropiloto, para tratar agua residual urbana real (ARU) y generar electricidad por acción de bacterias electroactivas que oxidan la materia orgánica. Para ello se construyó un humedal vertical de flujo ascendente al que se integraron 2 electrodos de grafito conectados a una resistencia externa de 1000 ohm. HC-CCM se alimentó continuamente con ARU sedimentada durante 4 meses. El tiempo de residencia hidráulico fue de 1.2 d. Semanalmente, se evaluó la calidad del ARU influente y del efluente tratado. El voltaje producido se registró cada 10 min. Las eficiencias de remoción medias logradas fueron: 95.8% turbiedad, 77.5% DQO, 75.7% sólidos suspendidos totales, 96.1% E. coli, 5.7% fósforo reactivo total y 18.3% amonio. HC-CCM produjo electricidad de forma continua, con rendimientos de hasta 30.5 W·h/kg DQO removida. es_ES
dc.description.sponsorship Los autores agradecen a la Universidad Nacional del Litoral por financiar esta investigación mediante el Programa Curso de Acción para la Investigación y Desarrollo (CAI+D), convocatoria 2020, Resolución C.S. N° 400/19. es_ES
dc.language Español es_ES
dc.publisher Universitat Politècnica de València es_ES
dc.relation.ispartof Ingeniería del Agua es_ES
dc.rights Reconocimiento - No comercial - Compartir igual (by-nc-sa) es_ES
dc.subject Constructed wetland es_ES
dc.subject Microbial fuel cell es_ES
dc.subject Real sewage es_ES
dc.subject Treatment efficiency es_ES
dc.subject Bioelectricity es_ES
dc.subject Humedal construido es_ES
dc.subject Celda de combustible microbiana es_ES
dc.subject Agua residual real es_ES
dc.subject Eficiencia de tratamiento es_ES
dc.subject Bioelectricidad es_ES
dc.title Tratamiento sustentable de agua residual urbana mediante un humedal construido acoplado con una celda de combustible microbiana es_ES
dc.title.alternative Sustainable treatment of urban wastewater using a constructed wetland coupled with a microbial fuel cell es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.4995/ia.2023.20318
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Modini, L.; Pizarro, A.; Zerbatto, M. (2023). Tratamiento sustentable de agua residual urbana mediante un humedal construido acoplado con una celda de combustible microbiana. Ingeniería del Agua. 27(4):283-293. https://doi.org/10.4995/ia.2023.20318 es_ES
dc.description.accrualMethod OJS es_ES
dc.relation.publisherversion https://doi.org/10.4995/ia.2023.20318 es_ES
dc.description.upvformatpinicio 283 es_ES
dc.description.upvformatpfin 293 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 27 es_ES
dc.description.issue 4 es_ES
dc.identifier.eissn 1886-4996
dc.relation.pasarela OJS\20318 es_ES
dc.contributor.funder Universidad Nacional del Litoral, Argentina es_ES
dc.description.references APHA, AWWA, WEF. 2012. Standard Methods for the Examination of Water and Wastewater. American Public Health Association, Washington, USA. es_ES
dc.description.references APHA, AWWA, WPCF. 1992. Métodos Normalizados para el Análisis de aguas potables y residuales. Ediciones Díaz de Santos, Madrid, España. es_ES
dc.description.references BID, CEPAL. 2018. Proceso regional de las américas. Foro mundial del agua 2018. Informe Regional América Latina y el Caribe: Resumen ejecutivo 2018. Banco Interamericano de Desarrollo, Comisión Económica para América Latina y el Caribe, USA. es_ES
dc.description.references Burgos, V., Araya, F., Reyes-Contreras, C., Vera, I., Vidal, G. 2017. Performance of ornamental plants in mesocosm subsurface constructed wetlands under different organic sewage loading. Ecological Engineering, 99, 246-255. https://doi.org/10.1016/j.ecoleng.2016.11.058 es_ES
dc.description.references Directiva 91/271/CEE, de 21 de mayo de 1991, sobre el tratamiento de las aguas residuales urbanas. DOCE, 135, de 30 de mayo de 1991. https://www.boe.es/buscar/doc.php?id=DOUE-L-1991-80646 es_ES
dc.description.references Doherty, L., Zhao, Y., Zhao, X., Hu, Y., Hao, X., Xu, L., Liu, R. 2015a. A review of a recently emerged technology: Constructed wetland - Microbial fuel cells. Water Research, 85, 38-45. https://doi.org/10.1016/j.watres.2015.08.016 es_ES
dc.description.references Doherty, L., Zhao, Y., Zhao, X., Wang, W. 2015b. The effects of electrode spacing and flow direction on the performance of microbial fuel cell-constructed wetland. Ecological Engineering, 79, 8-14. https://doi.org/10.1016/j.ecoleng.2015.03.004 es_ES
dc.description.references Doherty, L., Zhao, Y., Zhao, X., Wang, W. 2015c. Nutrient and organics removal from swine slurry with simultaneous electricity generation in an alum sludge-based constructed wetland incorporating microbial fuel cell technology. Chemical Engineering Journal, 266, 74-81. https://doi.org/10.1016/j.cej.2014.12.063 es_ES
dc.description.references Ebrahimi, A., Muttucumaru, S., McLauchlan, C., Ansari, A., Vishwanathan, A.S. 2021. A critical review of the symbiotic relationship between constructed wetland and microbial fuel cell for enhancing pollutant removal and energy generation. Journal of Environmental Chemical Engineering, 9. 105011. https://doi.org/10.1016/j.jece.2020.105011 es_ES
dc.description.references Forbes, M.G., Dickson, K.R., Golden, T.D., Hudak, P., Doyle, R.D. 2004. Dissolved Phosphorus Retention of LightWeight Expanded Shale and Masonry Sand Used in Subsurface Flow Treatment Wetlands. Environmental Science & Technology, 38, 892-898. https://doi.org/10.1021/es034341z es_ES
dc.description.references Ge, X., Cao, X., Song, X., Wang, Y., Si, Z., Zhao, Y., Wang, W., Tesfahunegn, A.A. 2020. Bioenergy generation and simultaneous nitrate and phosphorus removal in a pyrite-based constructed wetland-microbial fuel cell. Bioresource Technology, 296, 122350. https://doi.org/10.1016/j.biortech.2019.122350 es_ES
dc.description.references Ge, Z., Li, J., Xiao, L., Tong, Y., He, Z. 2014. Recovery of electrical energy in microbial fuel cell: brief review. Environmental Science and Technology Letter, 1, 137-141. https://doi.org/10.1021/ez4000324 es_ES
dc.description.references Gil, H.A., Cisneros, J.M., de Prada, J.D., Plevich, J.O., Sánchez Delgado, A.R. 2013. Tecnologías verdes para el aprovechamiento de aguas residuales urbanas: análisis económico. Revista Ambiente & Água - An Interdisciplinary Journal of Applied Science, 8(3), 118-128. es_ES
dc.description.references González, T., Puigagut, J., Vidal, G. 2021. Organic matter removal and nitrogen transformation by a constructed-wetlandmicrobial fuel cell system with simultaneous bioelectricity generation. Science of The Total Environment 753, 142075. https://doi.org/10.1016/j.scitotenv.2020.142075 es_ES
dc.description.references Guadarrama-Pérez, O., Gutiérrez-Macías, T., García-Sánchez, L., Guadarrama-Pérez, V., Estrada-Arriaga, E. 2019. Recent advances in constructed wetland-microbial fuel cells for simultaneous bioelectricity production and wastewater treatment: A review. International Journal Energy Research, 43, 5106-5127. https://doi.org/10.1002/er.4496 es_ES
dc.description.references Gupta, S., Srivastava, P., Patil, S.A., Yadav, A.K. 2021. A comprehensive review on emerging constructed wetland coupled microbial fuel cell technology: Potential applications and challenges. Bioresource Technology, 320, 124376. https://doi.org/10.1016/j.biortech.2020.124376 es_ES
dc.description.references Hoffmann, H., Platzer, C., Winker, M., von Muench, E. 2011. Revisión Técnica de Humedales Artificial de flujo subsuperficial para el tratamiento de aguas grises y aguas domésticas. Agencia de Cooperación Internacional de Alemania, Programa de Saneamiento Sostenible, Eschborn, Alemania. es_ES
dc.description.references Kataki, S., Chatterjee, S., Vairale, M.G., Sharma, S., Dwivedi S.K., Gupta, D.K. 2021. Constructed wetland, an eco-technology for wastewater treatment: A review on various aspects of microbial fuel cell integration, low temperature strategies and life cycle impact of the technology. Renewable and Sustainable Energy Reviews, 148, 111261. https://doi.org/10.1016/j.rser.2021.111261 es_ES
dc.description.references Ley Provincial 11220, de 24 de noviembre de 1994, sobre transformación del sector público de agua potable, desagües cloacales y saneamiento. Boletín oficial de la Provincia de Santa Fe, 12 de diciembre de 1994. https://www.argentina.gob.ar/normativa/provincial/ley-11220-123456789-0abc-defg-022-1100svorpyel/actualizacion es_ES
dc.description.references Logan, B.E. 2008. Microbial fuel cells. Wiley & Sons, Inc., New Jersey, USA. https://doi.org/10.1002/9780470258590 es_ES
dc.description.references Pinto, R.P., Srinivasan, B., Guiot, S.R., Tartakovsky, B. 2011. The effect of real-time external resistance optimization on microbial fuel cell performance. Water Research, 45, 1571-1578. https://doi.org/10.1016/j.watres.2010.11.033 es_ES
dc.description.references Rabaey, K., Rodriguez, J., Blackall, L., Keller, J., Gross, P., Batstone, D., Verstraete, W., Nealson, K.H. 2007. Microbial ecology meets electrochemistry: electricity-driven and driving communities. The ISME Journal: Multidisciplinary Journal of Microbial Ecology, 88, 3999-4004. https://doi.org/10.1038/ismej.2007.4 es_ES
dc.description.references Revelo, D.M., Hurtado, N.H., Ruíz, J.O. 2013. Celdas de combustible microbianas (CCMS): Un reto para la remoción de materia orgánica y la generación de energía eléctrica. Información Tecnológica, 24(6), 17-26. https://doi.org/10.4067/S0718-07642013000600004 es_ES
dc.description.references Srivastava, P., Abbassi, R., Yadav, A.K, Garaniya, V., Asadnia, M. 2020. A review on the contribution of electron flow in electroactive wetlands: Electricity generation and enhanced wastewater treatment. Chemosphere, 254, 126926. https://doi.org/10.1016/j.chemosphere.2020.126926 es_ES
dc.description.references Stefanakis, I.A., Akratos, C.S. 2016. Removal of Pathogenic Bacteria in Constructed Wetlands: Mechanisms and Efficiency. In: Phytoremediation (A. Ansari, S. Gill, R. Gill, G. Lanza, L. Newman, Eds.). Springer International Publishing, Switzerland, 327-346. https://doi.org/10.1007/978-3-319-41811-7_17 es_ES
dc.description.references Tilley, E., Lüthi, C., Morel, A., Zurbrügg, C., Schertenleib, R. 2011. Compendio de Sistemas y Tecnologías de Saneamiento. Eawag, Dübendorf, Suiza. es_ES
dc.description.references UNEP, WHO, UNESCO, WMO. 1987‎. GEMS/WATER operational guide. World Health Organization, Ginebra, Suiza. es_ES
dc.description.references Vidal, G., Hormazábal, S. 2018. Humedales construidos. Diseño y operación. Universidad de Concepción, Concepción, Chile. es_ES
dc.description.references Villaseñor, J., Capilla, P., Rodrigo, M.A., Cañizares, P., Fernández, F.J. 2013. Operation of a horizontal subsurface flow constructed wetland e microbial fuel cell treating wastewater under different organic loading rates. Water Research, 47, 6731-6738. https://doi.org/10.1016/j.watres.2013.09.005 es_ES
dc.description.references Vohla, C., Kõiv, M., Bavor, H.J., Chazarenc, F., Mander, Ü. 2011. Filter materials for phosphorus removal from wastewater in treatment wetlands. A review. Ecological Engineering, 37(1), 70-89. https://doi.org/10.1016/j.ecoleng.2009.08.003 es_ES
dc.description.references Vymazal, J. 2007. Removal of nutrients in various types of constructed wetlands. Science of the Total Environment, 380 (1-3), 48-65. https://doi.org/10.1016/j.scitotenv.2006.09.014 es_ES
dc.description.references Vymazal, J. 2011. Constructed wetlands for wastewater treatment: five decades of experience. Environmental Science & Technology, 45, 61-69. https://doi.org/10.1021/es101403q es_ES
dc.description.references Wang, W., Zhang, Y., Li, M., Wei, X., Wang, Y., Liu, L., Wang, H., Shen, S. 2020. Operation mechanism of constructed wetlandmicrobial fuel cells for wastewater treatment and electricity generation: A review. Bioresource Technology, 314, 123808. https://doi.org/10.1016/j.biortech.2020.123808 es_ES
dc.description.references Zhao, Y., Collum, S., Phelan, M., Goodbody, T., Doherty, L., Hu, Y.S. 2013. Preliminary investigation of constructed wetland incorporating microbial fuel cell: batch and continuous flow trials. Chemical Engineering Journal, 229, 364-370. https://doi.org/10.1016/j.cej.2013.06.023 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem