- -

Interaural time difference individualization in HRTF by scaling through anthropometric parameters

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Interaural time difference individualization in HRTF by scaling through anthropometric parameters

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Gutiérrez-Parera, Pablo es_ES
dc.contributor.author López Monfort, José Javier es_ES
dc.contributor.author Mora-Merchan, Javier M. es_ES
dc.contributor.author Larios, Diego F. es_ES
dc.date.accessioned 2023-11-15T19:01:38Z
dc.date.available 2023-11-15T19:01:38Z
dc.date.issued 2022-05-12 es_ES
dc.identifier.issn 1687-4722 es_ES
dc.identifier.uri http://hdl.handle.net/10251/199845
dc.description.abstract [EN] Head-related transfer function (HRTF) individualization can improve the perception of binaural sound. The interaural time difference (ITD) of the HRTF is a relevant cue for sound localization, especially in azimuth. Therefore, individualization of the ITD is likely to result in better sound spatial localization. A study of ITD has been conducted from a perceptual point of view using data from individual HRTF measurements and subjective perceptual tests. Two anthropometric dimensions have been demonstrated in relation to the ITD, predicting the subjective behavior of various subjects in a perceptual test. With this information, a method is proposed to individualize the ITD of a generic HRTF set by adapting it with a scale factor, which is obtained by a linear regression formula dependent on the two previous anthropometric dimensions. The method has been validated with both objective measures and another perceptual test. In addition, practical regression formula coefficients are provided for fitting the ITD of the generic HRTFs of the widely used Brüel & Kjær 4100 and Neumann KU100 binaural dummy heads. es_ES
dc.description.sponsorship This work has received funding from the Spanish Ministry of Science and Innovation through the project RTI2018-097045-B-C22, and from the Spanish Ministry of Universities under the "Margarita Salas" program supported by the NextGenerationEU funds of the European Union. es_ES
dc.language Inglés es_ES
dc.publisher Springer (Biomed Central Ltd.) es_ES
dc.relation.ispartof EURASIP Journal on Audio, Speech and Music Processing es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject HRTF es_ES
dc.subject ITD es_ES
dc.subject Spatial sound es_ES
dc.subject Individualization es_ES
dc.subject Anthropometric parameters es_ES
dc.subject Perceptual test es_ES
dc.subject Binaural dummy head es_ES
dc.subject.classification TEORÍA DE LA SEÑAL Y COMUNICACIONES es_ES
dc.title Interaural time difference individualization in HRTF by scaling through anthropometric parameters es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1186/s13636-022-00241-y es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-097045-B-C22/ES/AUDIO ESPACIAL INTELIGENTE: SINTESIS Y PERSONALIZACION/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UNIVERSIDAD POLITECNICA DE VALENCIA//MS%2F43//AYUDA MARGARITA SALAS DE GUTIERREZ PARERA, PABLO/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros de Telecomunicación - Escola Tècnica Superior d'Enginyers de Telecomunicació es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Telecomunicación y Aplicaciones Multimedia - Institut Universitari de Telecomunicacions i Aplicacions Multimèdia es_ES
dc.description.bibliographicCitation Gutiérrez-Parera, P.; López Monfort, JJ.; Mora-Merchan, JM.; Larios, DF. (2022). Interaural time difference individualization in HRTF by scaling through anthropometric parameters. EURASIP Journal on Audio, Speech and Music Processing. 2022(1):1-19. https://doi.org/10.1186/s13636-022-00241-y es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1186/s13636-022-00241-y es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 19 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 2022 es_ES
dc.description.issue 1 es_ES
dc.relation.pasarela S\465417 es_ES
dc.contributor.funder AGENCIA ESTATAL DE INVESTIGACION es_ES
dc.contributor.funder UNIVERSIDAD POLITECNICA DE VALENCIA es_ES
dc.description.references H. Møller, Fundamentals of binaural technology. Appl. Acoust.36(3-4), 171–218 (1992). https://doi.org/10.1016/0003-682X(92)90046-U. es_ES
dc.description.references H. Møller, M. F. Sørensen, C. B. Jensen, D. Hammershøi, Binaural technique: Do we need individual recordingsJ. Audio Eng. Soc.44(6), 451–464 (1996). es_ES
dc.description.references V. R. Algazi, C. Avendano, R. O. Duda, Elevation localization and head-related transfer function analysis at low frequencies. J. Acoust. Soc. Am.109(3), 1110–1122 (2001). https://doi.org/10.1121/1.1349185. es_ES
dc.description.references E. M. Wenzel, M. Arruda, D. J. Kistler, F. L. Wightman, Localization using nonindividualized head-related transfer functions. J. Acoust. Soc. Am.94(1), 111–123 (1993). https://doi.org/10.1121/1.407089. es_ES
dc.description.references J. C. Middlebrooks, Virtual localization improved by scaling nonindividualized external-ear transfer functions in frequency,. J. Acoust. Soc. Am.106(3 Pt 1), 1493–1510 (1999). https://doi.org/10.1121/1.427147. es_ES
dc.description.references D. R. Begault, E. M. Wenzel, M. R. Anderson, Direct comparison of the impact of head tracking, reverberation, and individualized head-related transfer functions on the spatial perception of a virtual speech source. J. Audio Eng. Soc.49(10), 904–916 (2001). es_ES
dc.description.references B. U. Seeber, H. Fastl, in Proceedings of the 2003 International Conference on Auditory Display. Subjective selection of non-individual head-related transfer functions (Georgia Institute of TechnologyBoston University, 2003), pp. 1–4. es_ES
dc.description.references J. C. Middlebrooks, Individual differences in external-ear transfer functions reduced by scaling in frequency. J. Acoust. Soc. Am.106(3), 1480–1492 (1999). https://doi.org/10.1121/1.427176. es_ES
dc.description.references R. Pelzer, M. Dinakaran, F. Brinkmann, S. Lepa, P. Grosche, S. Weinzierl, Head-related transfer function recommendation based on perceptual similarities and anthropometric features. J. Acoust. Soc. Am.148(6), 3809–3817 (2020). https://doi.org/10.1121/10.0002884. es_ES
dc.description.references E. A. Torres-Gallegos, F. Orduña-Bustamante, F. Arámbula-Cosío, Personalization of head-related transfer functions (HRTF) based on automatic photo-anthropometry and inference from a database. Appl. Acoust.97:, 84–95 (2015). https://doi.org/10.1016/j.apacoust.2015.04.009. es_ES
dc.description.references F. Brinkmann, M. Dinakaran, R. Pelzer, P. Grosche, D. Voss, S. Weinzierl, A cross-evaluated database of measured and simulated HRTFs including 3D head meshes, anthropometric features, and headphone impulse responses. J. Audio Eng. Soc.67(9), 705–718 (2019). https://doi.org/10.17743/jaes.2019.0024. es_ES
dc.description.references B. F. G. Katz, Boundary element method calculation of individual head-related transfer function. I. Rigid model calculation. J. Acoust. Soc. Am.110(5), 2440–2448 (2001). https://doi.org/10.1121/1.1412440. es_ES
dc.description.references A. Roginska, P. Geluso, Immersive Sound: the Art and Science of Binaural and Multi-channel Audio (Focal Press, New York, 2017). es_ES
dc.description.references K. Sunder, J He, EL Tan, W-S Gan, Natural Sound Rendering for Headphones: Integration of signal processing techniques. IEEE Signal Proc. Mag.32(2), 100–113 (2015). https://doi.org/10.1109/MSP.2014.2372062. es_ES
dc.description.references J. W. Strutt (Lord Rayleigh), On our perception of sound direction. Lond. Edinb. Dublin Philos. Mag. J. Sci.13(74), 214–232 (1907). https://doi.org/10.1080/14786440709463595. es_ES
dc.description.references F. L. Wightman, D. J. Kistler, The dominant role of low-frequency inter aural time differences in sound localization. J. Acoust. Soc. Am.91(3), 1648–1661 (1992). https://doi.org/10.1121/1.402445. es_ES
dc.description.references M. T. Pastore, J. Braasch, The impact of peripheral mechanisms on the precedence effect. J. Acoust. Soc. Am.146(1), 425–444 (2019). https://doi.org/10.1121/1.5116680. es_ES
dc.description.references R. S. Woodworth, H. Schlosberg, Experimental Psychology, Rev. Ed (Holt, Oxford, 1954). es_ES
dc.description.references G. F. Kuhn, Model for the interaural time differences in the azimuthal plane. J. Acoust. Soc. Am.62(1), 157–167 (1977). https://doi.org/10.1121/1.381498. es_ES
dc.description.references V. Larcher, J. -M. Jot, in Proceedings of the Congrès Français d’Acoustique. Techniques d’interpolation de filtres audio-numérique, Application à la reproduction spatiale des sons sur écouteurs (Société française d’acoustique SFA, 1997). https://hal.archives-ouvertes.fr/hal-01106982. es_ES
dc.description.references L. Savioja, J. Huopaniemi, T. Lokki, R. Väänänen, Creating Interactive Virtual Acoustic Environments. J. Audio Eng. Soc.47(9), 675–705 (1999). es_ES
dc.description.references V. R. Algazi, C. Avendano, R. O. Duda, Estimation of a spherical-head model from anthropometry. J. Audio Eng. Soc.49(6), 472–479 (2001). https://doi.org/10.1017/CBO9781107415324.004. es_ES
dc.description.references S. Busson, Individualisation d’indices acoustiques pour la synthèse binaurale. PhD thesis, Université de la Méditerranée - Aix-Marseille II (2006). es_ES
dc.description.references V. R. Algazi, R. O. Duda, R. Duraiswami, N. A. Gumerov, Z. Tang, Approximating the head-related transfer function using simple geometric models of the head and torso. J. Acoust. Soc. Am.112(5), 2053–2064 (2002). https://doi.org/10.1121/1.1508780. es_ES
dc.description.references R. O. Duda, C. Avendano, V. R. Algazi, in ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings, vol 2. An adaptable ellipsoidal head model for the interaural time difference (IEEE, 1999), pp. 965–968. https://doi.org/10.1109/ICASSP.1999.759855. es_ES
dc.description.references R. Bomhardt, M. Lins, J. Fels, Analytical Ellipsoidal Model of Interaural Time Differences for the Individualization of Head-Related Impulse Responses. J. Audio Eng. Soc.64(11), 882–893 (2016). https://doi.org/10.17743/jaes.2016.0041. es_ES
dc.description.references M. Aussal, F. Alouges, B. F. G. Katz, in Spatial Audio in Today’s 3D World - AES 25th UK Conference. ITD Interpolation and Personalization for Binaural Synthesis using Spherical Harmonics (Audio Engineering SocietyYork, England, 2012). es_ES
dc.description.references P. Bilinski, J. Ahrens, M. R. P. Thomas, I. J. Tashev, J. C. Platt, in 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). HRTF magnitude synthesis via sparse representation of anthropometric features (IEEEFlorence, 2014), pp. 4468–4472. https://doi.org/10.1109/ICASSP.2014.6854447. es_ES
dc.description.references R. Bomhardt, H. Braren, J. Fels, in Proceedings of Meetings on Acoustics, vol 29. Individualization of head-related transfer functions using principal component analysis and anthropometric dimensions (Acoustical Society of AmericaHonolulu, 2016), p. 050007. https://doi.org/10.1121/2.0000562. es_ES
dc.description.references X. Zhong, B. Xie, An individualized interaural time difference model based on spherical harmonic function expansion. Chin. J. Acoust.32(3), 284 (2013). es_ES
dc.description.references X. Zhong, B. Xie, A novel model of interaural time difference based on spatial fourier analysis. Chin. Phys. Lett.24(5), 1313–1316 (2007). https://doi.org/10.1088/0256-307X/24/5/052. es_ES
dc.description.references I. Tashev, in 2014 Information Theory and Applications Workshop (ITA). Hrtf Phase Synthesis Via Sparse Representation of Anthropometric Features (IEEESan Diego, 2014), pp. 1–5. https://doi.org/10.1109/ITA.2014.6804239. es_ES
dc.description.references H. Gamper, D. Johnston, I. J. Tashev, in 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Interaural time delay personalisation using incomplete head scans (IEEENew Orleans, 2017), pp. 461–465. https://doi.org/10.1109/ICASSP.2017.7952198. es_ES
dc.description.references A. Lindau, J. Estrella, S. Weinzierl, in Proc of the 128th AES Convention. Individualization of dynamic binaural synthesis by real time manipulation of the ITD (Audio Engineering SocietyLondon, 2010). es_ES
dc.description.references J. J. Lopez, P. Gutierrez-Parera, in Audio Engineering Society 142nd Convention. Equipment for fast measurement of Head-Related Transfer Functions (Audio Engineering SocietyBerlin, 2017), p. 335. es_ES
dc.description.references J. J. Lopez, P. Gutierrez-Parera, M. Cobos, Compensating first reflections in non-anechoic head-related transfer function measurements. Appl. Acoust.188:, 108523 (2022). https://doi.org/10.1016/j.apacoust.2021.108523. es_ES
dc.description.references Brüel & Kjær, TYPE 4100 - Brüel & Kjær Sound & Vibration, sound quality Head and Torso Simulator. https://www.bksv.com/en/products/transducers/ear-simulators/head-and-torso/hats-type-4100. Accessed 25 09 2019. es_ES
dc.description.references F. Christensen, G. Martin, P. Minnaar, W. K. Song, B. Pedersen, M. Lydolf, in Audio Engineering Society 118th Convention, vol 1. A listening test system for automotive audio - Part 1: System description (Barcelona, 2005), pp. 163–172. es_ES
dc.description.references Georg Neumann GmbH, Neumann KU100 Dummy head. https://en-de.neumann.com/ku-100. Accessed 25 09 2019. es_ES
dc.description.references A. Andreopoulou, D. R. Begault, B. F. G. Katz, Inter-Laboratory Round Robin HRTF Measurement Comparison. IEEE J Sel Top Signal Proc.9(5), 895–906 (2015). https://doi.org/10.1109/JSTSP.2015.2400417. es_ES
dc.description.references M. Karjalainen, T. Paatero, in IEEE ASSP Workshop on Applications of Signal Processing to Audio and Acoustics. Frequency-dependent signal windowing (IEEENew Paltz, 2001), pp. 35–38. https://doi.org/10.1109/aspaa.2001.969536. es_ES
dc.description.references F. Denk, B. Kollmeier, S. D. Ewert, Removing reflections in semianechoic impulse responses by frequency-dependent truncation. J. Audio Eng. Soc.66(3), 146–153 (2018). https://doi.org/10.17743/jaes.2018.0002. es_ES
dc.description.references S. Fontana, A. Farina, in Audio Engineering Society 120th Convention. A System for Rapid Measurement and Direct Customization of Head Related Impulse Responses (Audio Engineering SocietyParis, 2006). es_ES
dc.description.references J. Gómez Bolaños, V. Pulkki, in Audio Engineering Society 133rd Convention. HRIR database with measured actual source direction data (Audio Engineering SocietyNew York, 2012). es_ES
dc.description.references J. Gómez Bolaños, A. Mäkivirta, V. Pulkki, Automatic Regularization Parameter for Headphone Transfer Function Inversion. J. Audio Eng. Soc.64(10), 752–761 (2016). https://doi.org/10.17743/jaes.2016.0030. es_ES
dc.description.references Mathworks, MATLAB Camera calibrator App. https://es.mathworks.com/help/vision/ref/cameracalibrator-app.html. Accessed 21 Dec 2021. es_ES
dc.description.references K. Watanabe, K. Ozawa, Y. Iwaya, Y. Suzuki, K. Aso, Estimation of interaural level difference based on anthropometry and its effect on sound localization. J. Acoust. Soc. Am.122(5), 2832–2841 (2007). https://doi.org/10.1121/1.2785039. es_ES
dc.description.references M. Zhang, R. A. Kennedy, T. D. Abhayapala, W. Zhang, in 2011 Joint Workshop on Hands-free Speech Communication and Microphone Arrays, HSCMA’11. Statistical method to identify key anthropometric parameters in hrtf individualization (IEEE, 2011), pp. 213–218. https://doi.org/10.1109/HSCMA.2011.5942401. es_ES
dc.description.references B. F. G. Katz, M. Noisternig, A comparative study of interaural time delay estimation methods. J. Acoust. Soc. Am.135(6), 3530–3540 (2014). https://doi.org/10.1121/1.4875714. es_ES
dc.description.references A. Andreopoulou, B. F. G. Katz, Identification of perceptually relevant methods of inter-aural time difference estimation. J. Acoust. Soc. Am.142(2), 588–598 (2017). https://doi.org/10.1121/1.4996457. es_ES
dc.description.references T. Nishino, N. Inoue, K. Takeda, F. Itakura, Estimation of HRTFs on the horizontal plane using physical features. Appl. Acoust.68(8), 897–908 (2007). https://doi.org/10.1016/j.apacoust.2006.12.010. es_ES
dc.description.references M. Romanov, P. Berghold, D. Rudrich, M. Zaunschirm, M. Frank, F. Zotter, in Audio Engineering Society 142nd Convention. Implementation and Evaluation of a Low-cost Head-tracker for Binaural Synthesis (Audio Engineering SocietyBerlin, 2017), pp. 1–6. es_ES
dc.description.references Z. Ben-Hur, D. L. Alon, P. W. Robinson, R. Mehra, in Proceedings of the AES International Conference on Audio for Virtual and Augmented Reality, vol August. Localization of virtual sounds in dynamic listening using sparse HRTFs (Audio Engineering SocietyNew York, 2020). es_ES
dc.description.references S. Werner, G. Götz, F. Klein, in Audio Engineering Society 142nd International Convention. Influence of head tracking on the externalization of auditory events at divergence between synthesized and listening room using a binaural headphone system (Audio Engineering SocietyBerlin, 2017). es_ES
dc.description.references J. Oberem, J. G. Richter, D. Setzer, J. Seibold, I. Koch, J. Fels, Experiments on localization accuracy with non-individual and individual HRTFs comparing static and dynamic reproduction methods. bioRxiv (2020). https://doi.org/10.1101/2020.03.31.011650. es_ES
dc.description.references B. Rosner, Percentage points for a generalized esd many-outlier procedure. Technometrics. 25(2), 165–172 (1983). https://doi.org/10.1080/00401706.1983.10487848. es_ES
dc.description.references A. Andreopoulou, B. F. G. Katz, Subjective HRTF evaluations for obtaining global similarity metrics of assessors and assessees. J. Multimodal User Interfaces. 10(3), 259–271 (2016). https://doi.org/10.1007/s12193-016-0214-y. es_ES
dc.description.references C. Armstrong, L. Thresh, D. Murphy, G. Kearney, A Perceptual Evaluation of Individual and Non-Individual HRTFs: A Case Study of the SADIE II Database. Appl. Sci.8(11), 2029 (2018). https://doi.org/10.3390/app8112029. es_ES
dc.description.references A. Andreopoulou, B. F. G. Katz, in Audio Engineering Society 140th Convention. Investigation on Subjective HRTF Rating Repeatability (Audio Engineering SocietyParis, 2016). es_ES
dc.description.references B. G. Shinn-Cunningham, N. I. Durlach, R. M. Held, Adapting to supernormal auditory localization cues. I. Bias and resolution. J. Acoust. Soc. Am.103(6), 3656–3666 (1998). https://doi.org/10.1121/1.423088. es_ES
dc.description.references L. Kaufman, P. J. Rousseeuw, Finding Groups in Data: an Introduction to Cluster Analysis (Wiley, 1990). https://doi.org/10.1002/9780470316801. es_ES
dc.description.references H. Hu, L. Zhou, J. Zhang, H. Ma, Z. Wu, in 2006 International Conference on Computational Intelligence and Security, ICCIAS 2006, vol 2. Head related transfer function personalization based on multiple regression analysis (IEEE, 2007), pp. 1829–1832. https://doi.org/10.1109/ICCIAS.2006.295380. es_ES
dc.description.references W. W. Hugeng, D. Gunawan, Improved method for individualization of Head-Related Transfer Functions on horizontal plane using reduced number of anthropometric measurements. J. Telecommun.2(2), 31–41 (2010). http://arxiv.org/abs/1005.5137. es_ES
dc.description.references C. Mendonça, G. Campos, P. Dias, J. A. Santos, Learning Auditory Space: Generalization and Long-Term Effects. PLoS ONE. 8(10) (2013). https://doi.org/10.1371/journal.pone.0077900. es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem