- -

Multiobjective optimization framework for designing a steering system considering structural features and full vehicle dynamics

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Multiobjective optimization framework for designing a steering system considering structural features and full vehicle dynamics

Mostrar el registro completo del ítem

Llopis-Albert, C.; Rubio Montoya, FJ.; Devece Carañana, CA.; Zeng, S. (2023). Multiobjective optimization framework for designing a steering system considering structural features and full vehicle dynamics. Scientific Reports. 13:1-13. https://doi.org/10.1038/s41598-023-45349-z

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/200494

Ficheros en el ítem

Metadatos del ítem

Título: Multiobjective optimization framework for designing a steering system considering structural features and full vehicle dynamics
Autor: Llopis-Albert, Carlos Rubio Montoya, Francisco José Devece Carañana, Carlos Alberto Zeng, Shouzhen
Entidad UPV: Universitat Politècnica de València. Facultad de Administración y Dirección de Empresas - Facultat d'Administració i Direcció d'Empreses
Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería del Diseño - Escola Tècnica Superior d'Enginyeria del Disseny
Fecha difusión:
Resumen:
[EN] Vehicle handling and stability performance and ride comfort is normally assessed through standard field test procedures, which are time consuming and expensive. However, the rapid development of digital technologies ...[+]
Derechos de uso: Reconocimiento (by)
Fuente:
Scientific Reports. (issn: 2045-2322 )
DOI: 10.1038/s41598-023-45349-z
Editorial:
Nature Publishing Group
Versión del editor: https://doi.org/10.1038/s41598-023-45349-z
Tipo: Artículo

References

Llopis-Albert, C., Rubio, F. & Valero, F. Impact of digital transformation on the automotive industry. Technol. Forecast. Soc. Chang. 162, 120343. https://doi.org/10.1016/j.techfore.2020.120343 (2021).

Rubio, F., Llopis-Albert, C., Valero, F. & Besa, A. Sustainability and optimization in the automotive sector for adaptation to government vehicle pollutant emission regulations. J. Bus. Res. 112, 561–566. https://doi.org/10.1016/j.jbusres.2019.10.050 (2020).

Llopis-Albert, C., Palacios-Marqués, D. & Simón-Moya, V. Fuzzy set qualitative comparative analysis (fsQCA) applied to the adaptation of the automobile industry to meet the emission standards of climate change policies via the deployment of electric vehicles (EVs). Technol. Forecast. Soc. Change 169, 120843. https://doi.org/10.1016/j.techfore.2021.120843 (2021). [+]
Llopis-Albert, C., Rubio, F. & Valero, F. Impact of digital transformation on the automotive industry. Technol. Forecast. Soc. Chang. 162, 120343. https://doi.org/10.1016/j.techfore.2020.120343 (2021).

Rubio, F., Llopis-Albert, C., Valero, F. & Besa, A. Sustainability and optimization in the automotive sector for adaptation to government vehicle pollutant emission regulations. J. Bus. Res. 112, 561–566. https://doi.org/10.1016/j.jbusres.2019.10.050 (2020).

Llopis-Albert, C., Palacios-Marqués, D. & Simón-Moya, V. Fuzzy set qualitative comparative analysis (fsQCA) applied to the adaptation of the automobile industry to meet the emission standards of climate change policies via the deployment of electric vehicles (EVs). Technol. Forecast. Soc. Change 169, 120843. https://doi.org/10.1016/j.techfore.2021.120843 (2021).

Rubio, F. & Llopis-Albert, C. Viability of using wind turbines for electricity generation on electric vehicles. Multidiscip. J. Educ. Soc. Technol. Sci. 6(1), 115–126. https://doi.org/10.4995/muse.2019.11743 (2019).

Huang, H. H. & Tsai, M.-J. Vehicle cornering performance evaluation and enhancement based on CAE and experimental analyses. Appl. Sci. 9, 5428. https://doi.org/10.3390/app9245428 (2019).

Llopis-Albert, C., Rubio, F. & Zeng, S. Multiobjective optimization framework for designing a vehicle suspension system. A comparison of optimization algorithms. Adv. Eng. Softw. 176, 103375 (2023).

Jazar, R. N. Vehicle Dynamics: Theory and Application 1015 (Springer, 2008). https://doi.org/10.1007/978-0-387-74244-1

Drehmer, L. R. C., Martins, H. & Casas, W. J. P. An interval-based multi-objective robust design optimization for vehicle dynamics. Mech. Based Des. Struct. Mach. 51, 7076–7101. https://doi.org/10.1080/15397734.2022.2088557 (2022).

You, S., Jo, J., Yoo, S., Hahn, J. & Lee, K. Vehicle lateral stability management using gain-scheduled robust control. J. Mech. Sci. Technol. 20, 1898–1913. https://doi.org/10.1007/BF03027583 (2006).

Reiterer, F. et al. Fast parametrization of vehicle suspension models. 2018 Annual American Control Conference (ACC) 3263–3268. https://doi.org/10.23919/ACC.2018.8431456 (2018).

Kwon, K. et al. Multi-objective optimisation of hydro-pneumatic suspension with gas–oil emulsion for heavy-duty vehicles. Veh. Syst. Dyn. 58(7), 1146–1165. https://doi.org/10.1080/00423114.2019.1609050 (2020).

Issa, M. & Samn, A. Passive vehicle suspension system optimization using Harris Hawk Optimization algorithm. Math. Comput. Simul. 191, 328–345. https://doi.org/10.1016/j.matcom.2021.08.016 (2022).

Lenka, V. R., Anthonysamy, B., Londhe, A., & Hatekar, H. Multi-Objective Optimization to improve SUV ride performances using MSC.ADAMS and Mode Frontier. SAE Tech. Pap. https://doi.org/10.4271/2018-01-0575 (2018).

Wheatley, G. & Zaeimi, M. On the design of a wheel assembly for a race car. Results Eng. 11, 100244. https://doi.org/10.1016/j.rineng.2021.100244 (2021).

Saurabh, S. et al. Design of suspension system for formula student race car. Procedia Eng. 144, 1138–1149. https://doi.org/10.1016/j.proeng.2016.05.081 (2016).

Mitra, A. C. et al. Optimization of passive vehicle suspension system by genetic algorithm. Procedia Eng. 144, 1158–1166. https://doi.org/10.1016/j.proeng.2016.05.087 (2016).

Goga, V. & Klucik, M. Optimization of vehicle suspension parameters with use of evolutionary computation. Procedia Eng. 48, 174–179. https://doi.org/10.1016/j.proeng.2012.09.502 (2012).

Drehmer, L. R. C., Casas, W. J. P. & Gomes, H. M. Parameters optimisation of a vehicle suspension system using a particle swarm optimisation algorithm. Veh. Syst. Dyn. 53(4), 449–474. https://doi.org/10.1080/00423114.2014.1002503 (2015).

Holdmann, P., Köhn, P. & Möller, B. Suspension Kinematics and Compliance—Measuring and Simulation; Paper No. 980897 (SAE International, 1998).

Shreyas, B. N. & Kiran, M. D. Modelling and analysis of off-road rally vehicle using Adams Car. Int. J. Res. Sci. Innov. 5(9), 96–107 (2018).

Ikhsan, N., Ramli, R. & Alias, A. Analysis of the kinematics and compliance of a passive suspension system using Adams Car. J. Mech. Eng. Sci. 8, 1293–1301. https://doi.org/10.15282/jmes.8.2015.4.0126 (2015).

Ansara, A. S., William, A. M., Aziz, M. A. & Shafik, P. N. Optimization of front suspension and steering parameters of an off-road car using Adams/Car simulation. Int. J. Eng. Res. Technol. 6(9), 104–108. https://doi.org/10.17577/IJERTV6IS090055 (2017).

Azadi, S. & Mirzadeh, O. Sensitivity Analysis of Steering System Parameters for a Passenger Car by DOE Method; Paper No. 2005-01-1277 (SAE International, 2005).

Dixon, J. C. Suspension Geometry and Computation 99–125 (Wiley, 2009).

Mitchell, W., Staniforth, A. & Scott, I. Analysis of Ackermann Steering Geometry; Paper No. 2006-01-3638 (SAE International, 2006).

Ni, J. & Hu, J. Dynamic modelling and experimental validation of a skid-steered vehicle in the pivotal steering condition. Proc. Inst. Mech. Eng. Part D 231(2), 225–240. https://doi.org/10.1177/0954407016652760 (2017).

Upadhyay, V., Pathak, A., Kshirsagar, A. & Khan, I. Development of Methodology for Steering Effort Improvement for Mechanical Steering in Commercial Vehicles; Paper No. 2010–01–1887 (SAE International, 2010).

Singh, S., Hiremath, V., Ojha, V. & Jadhav, N. Effect of Steering System Compliance on Steered Axle Tire Wear; Paper No. 2012-01-1909 (SAE International, 2012).

Topaç, M. M., Deryal, U., Bahar, E. & Yavuz, G. Optimal kinematic design of a multi-link steering system for a bus independent suspension: An application of Response Surface Methodology. Mechanika 21(5), 404–413. https://doi.org/10.5755/j01.mech.21.5.11964 (2015).

Khanna, N. K. et al. Methodology to determine optimum suspension hard points at an early. Design stage for achieving steering returnability in any vehicle. SAE Tech. Pap. https://doi.org/10.4271/2019-26-0074 (2019).

Masilamani, R., Kumar, P. L., Krishnaraj, C. & Dhinesh, S. A review on enhancing the design and analysis of steering wheel by reducing the ratio. Int. J. Pure Appl. Math. 118(11), 251–255. https://doi.org/10.12732/ijpam.v118i11.31 (2018).

Jiregna, I. & Sirata, G. A review of the vehicle suspension system. J. Mech. Energy Eng. 4(44), 109–114. https://doi.org/10.30464/jmee.2020.4.2.109 (2020).

Kolekar, A., Mulani, S. M., Nerkar, A. & Borchate, S. Review on steering mechanism. Int. J. Sci. Adv. Res. Technol. 3(4), 95525. https://doi.org/10.13140/RG.2.2.17787.95525 (2017).

Mahale, R., Jaiswar, M., Gupta, G. & Kumar, A. Design of steering gear system in passenger Car: A review. Int. Res. J. Eng. Technol. 5(1), 1564–1570 (2018).

Elsawaf, A. & Vampola, T. Passive suspension system optimization using PSO to enhance ride comfort when crossing different types of speed control profiles. J. Traffic Transp. Eng. 3(2), 129–135. https://doi.org/10.12720/jtle.3.2.129-135 (2015).

Fossati, G. G., Miguel, L. F. F. & Casas, W. J. P. Multi-objective optimization of the suspension system parameters of a full vehicle model. Optim. Eng. 20(1), 151–177. https://doi.org/10.1007/s11081-018-9403-8 (2019).

Beiranvand, V. & Warren, H. Best practices for comparing optimization algorithms. Optim. Eng. 18, 815–848. https://doi.org/10.1007/s11081-017-9366-1 (2017).

ChunYan, W., YuQi, Z. & WanZhong, Z. Multi-objective optimization of a steering system considering steering modality. Adv. Eng. Softw. 126, 61–74. https://doi.org/10.1016/j.advengsoft.2018.09.012 (2018).

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem