- -

Multiobjective optimization framework for designing a steering system considering structural features and full vehicle dynamics

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Multiobjective optimization framework for designing a steering system considering structural features and full vehicle dynamics

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Llopis-Albert, Carlos es_ES
dc.contributor.author Rubio Montoya, Francisco José es_ES
dc.contributor.author Devece Carañana, Carlos Alberto es_ES
dc.contributor.author Zeng, Shouzhen es_ES
dc.date.accessioned 2023-12-04T19:02:21Z
dc.date.available 2023-12-04T19:02:21Z
dc.date.issued 2023-11-09 es_ES
dc.identifier.issn 2045-2322 es_ES
dc.identifier.uri http://hdl.handle.net/10251/200494
dc.description.abstract [EN] Vehicle handling and stability performance and ride comfort is normally assessed through standard field test procedures, which are time consuming and expensive. However, the rapid development of digital technologies in the automotive industry have enabled to properly model and simulate the full-vehicle dynamics, thus drastically reducing design and manufacturing times and costs while enhancing the performance, safety, and longevity of vehicle systems. This paper focus on a computationally efficient multi-objective optimization framework for developing an optimal design of a vehicle steering system, which is carried out by coupling certain computer-aided design tools (CAD) and computer-aided engineering (CAE) software. The 3D CAD model of the steering system is made using SolidWorks, the Finite Element Analysis (FEA) is modelled using Ansys Workbench, while the multibody kinematic and dynamic is analysed using Adams/Car. They are embedded in a multidisciplinary optimization design framework (modeFrontier) with the aim of determining the optimal hardpoint locations of the suspension and steering systems. This is achieved by minimizing the Ackermann error and toe angle deviations, together with the volume, mass, and maximum stresses of the rack-and-pinion steering mechanism. This enhances the vehicle stability, safety, manoeuvrability, and passengers' comfort, extends the vehicle systems reliability and fatigue life, while reducing the tire wear. The method has been successfully applied to different driving scenarios and vehicle maneuvers to find the optimal Pareto front and analyse the performance and behaviour of the steering system. Results show that the design of the steering system can be significantly improved using this approach. es_ES
dc.language Inglés es_ES
dc.publisher Nature Publishing Group es_ES
dc.relation.ispartof Scientific Reports es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject.classification INGENIERIA MECANICA es_ES
dc.subject.classification ORGANIZACION DE EMPRESAS es_ES
dc.title Multiobjective optimization framework for designing a steering system considering structural features and full vehicle dynamics es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1038/s41598-023-45349-z es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Facultad de Administración y Dirección de Empresas - Facultat d'Administració i Direcció d'Empreses es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería del Diseño - Escola Tècnica Superior d'Enginyeria del Disseny es_ES
dc.description.bibliographicCitation Llopis-Albert, C.; Rubio Montoya, FJ.; Devece Carañana, CA.; Zeng, S. (2023). Multiobjective optimization framework for designing a steering system considering structural features and full vehicle dynamics. Scientific Reports. 13:1-13. https://doi.org/10.1038/s41598-023-45349-z es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1038/s41598-023-45349-z es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 13 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 13 es_ES
dc.relation.pasarela S\502940 es_ES
dc.description.references Llopis-Albert, C., Rubio, F. & Valero, F. Impact of digital transformation on the automotive industry. Technol. Forecast. Soc. Chang. 162, 120343. https://doi.org/10.1016/j.techfore.2020.120343 (2021). es_ES
dc.description.references Rubio, F., Llopis-Albert, C., Valero, F. & Besa, A. Sustainability and optimization in the automotive sector for adaptation to government vehicle pollutant emission regulations. J. Bus. Res. 112, 561–566. https://doi.org/10.1016/j.jbusres.2019.10.050 (2020). es_ES
dc.description.references Llopis-Albert, C., Palacios-Marqués, D. & Simón-Moya, V. Fuzzy set qualitative comparative analysis (fsQCA) applied to the adaptation of the automobile industry to meet the emission standards of climate change policies via the deployment of electric vehicles (EVs). Technol. Forecast. Soc. Change 169, 120843. https://doi.org/10.1016/j.techfore.2021.120843 (2021). es_ES
dc.description.references Rubio, F. & Llopis-Albert, C. Viability of using wind turbines for electricity generation on electric vehicles. Multidiscip. J. Educ. Soc. Technol. Sci. 6(1), 115–126. https://doi.org/10.4995/muse.2019.11743 (2019). es_ES
dc.description.references Huang, H. H. & Tsai, M.-J. Vehicle cornering performance evaluation and enhancement based on CAE and experimental analyses. Appl. Sci. 9, 5428. https://doi.org/10.3390/app9245428 (2019). es_ES
dc.description.references Llopis-Albert, C., Rubio, F. & Zeng, S. Multiobjective optimization framework for designing a vehicle suspension system. A comparison of optimization algorithms. Adv. Eng. Softw. 176, 103375 (2023). es_ES
dc.description.references Jazar, R. N. Vehicle Dynamics: Theory and Application 1015 (Springer, 2008). https://doi.org/10.1007/978-0-387-74244-1 es_ES
dc.description.references Drehmer, L. R. C., Martins, H. & Casas, W. J. P. An interval-based multi-objective robust design optimization for vehicle dynamics. Mech. Based Des. Struct. Mach. 51, 7076–7101. https://doi.org/10.1080/15397734.2022.2088557 (2022). es_ES
dc.description.references You, S., Jo, J., Yoo, S., Hahn, J. & Lee, K. Vehicle lateral stability management using gain-scheduled robust control. J. Mech. Sci. Technol. 20, 1898–1913. https://doi.org/10.1007/BF03027583 (2006). es_ES
dc.description.references Reiterer, F. et al. Fast parametrization of vehicle suspension models. 2018 Annual American Control Conference (ACC) 3263–3268. https://doi.org/10.23919/ACC.2018.8431456 (2018). es_ES
dc.description.references Kwon, K. et al. Multi-objective optimisation of hydro-pneumatic suspension with gas–oil emulsion for heavy-duty vehicles. Veh. Syst. Dyn. 58(7), 1146–1165. https://doi.org/10.1080/00423114.2019.1609050 (2020). es_ES
dc.description.references Issa, M. & Samn, A. Passive vehicle suspension system optimization using Harris Hawk Optimization algorithm. Math. Comput. Simul. 191, 328–345. https://doi.org/10.1016/j.matcom.2021.08.016 (2022). es_ES
dc.description.references Lenka, V. R., Anthonysamy, B., Londhe, A., & Hatekar, H. Multi-Objective Optimization to improve SUV ride performances using MSC.ADAMS and Mode Frontier. SAE Tech. Pap. https://doi.org/10.4271/2018-01-0575 (2018). es_ES
dc.description.references Wheatley, G. & Zaeimi, M. On the design of a wheel assembly for a race car. Results Eng. 11, 100244. https://doi.org/10.1016/j.rineng.2021.100244 (2021). es_ES
dc.description.references Saurabh, S. et al. Design of suspension system for formula student race car. Procedia Eng. 144, 1138–1149. https://doi.org/10.1016/j.proeng.2016.05.081 (2016). es_ES
dc.description.references Mitra, A. C. et al. Optimization of passive vehicle suspension system by genetic algorithm. Procedia Eng. 144, 1158–1166. https://doi.org/10.1016/j.proeng.2016.05.087 (2016). es_ES
dc.description.references Goga, V. & Klucik, M. Optimization of vehicle suspension parameters with use of evolutionary computation. Procedia Eng. 48, 174–179. https://doi.org/10.1016/j.proeng.2012.09.502 (2012). es_ES
dc.description.references Drehmer, L. R. C., Casas, W. J. P. & Gomes, H. M. Parameters optimisation of a vehicle suspension system using a particle swarm optimisation algorithm. Veh. Syst. Dyn. 53(4), 449–474. https://doi.org/10.1080/00423114.2014.1002503 (2015). es_ES
dc.description.references Holdmann, P., Köhn, P. & Möller, B. Suspension Kinematics and Compliance—Measuring and Simulation; Paper No. 980897 (SAE International, 1998). es_ES
dc.description.references Shreyas, B. N. & Kiran, M. D. Modelling and analysis of off-road rally vehicle using Adams Car. Int. J. Res. Sci. Innov. 5(9), 96–107 (2018). es_ES
dc.description.references Ikhsan, N., Ramli, R. & Alias, A. Analysis of the kinematics and compliance of a passive suspension system using Adams Car. J. Mech. Eng. Sci. 8, 1293–1301. https://doi.org/10.15282/jmes.8.2015.4.0126 (2015). es_ES
dc.description.references Ansara, A. S., William, A. M., Aziz, M. A. & Shafik, P. N. Optimization of front suspension and steering parameters of an off-road car using Adams/Car simulation. Int. J. Eng. Res. Technol. 6(9), 104–108. https://doi.org/10.17577/IJERTV6IS090055 (2017). es_ES
dc.description.references Azadi, S. & Mirzadeh, O. Sensitivity Analysis of Steering System Parameters for a Passenger Car by DOE Method; Paper No. 2005-01-1277 (SAE International, 2005). es_ES
dc.description.references Dixon, J. C. Suspension Geometry and Computation 99–125 (Wiley, 2009). es_ES
dc.description.references Mitchell, W., Staniforth, A. & Scott, I. Analysis of Ackermann Steering Geometry; Paper No. 2006-01-3638 (SAE International, 2006). es_ES
dc.description.references Ni, J. & Hu, J. Dynamic modelling and experimental validation of a skid-steered vehicle in the pivotal steering condition. Proc. Inst. Mech. Eng. Part D 231(2), 225–240. https://doi.org/10.1177/0954407016652760 (2017). es_ES
dc.description.references Upadhyay, V., Pathak, A., Kshirsagar, A. & Khan, I. Development of Methodology for Steering Effort Improvement for Mechanical Steering in Commercial Vehicles; Paper No. 2010–01–1887 (SAE International, 2010). es_ES
dc.description.references Singh, S., Hiremath, V., Ojha, V. & Jadhav, N. Effect of Steering System Compliance on Steered Axle Tire Wear; Paper No. 2012-01-1909 (SAE International, 2012). es_ES
dc.description.references Topaç, M. M., Deryal, U., Bahar, E. & Yavuz, G. Optimal kinematic design of a multi-link steering system for a bus independent suspension: An application of Response Surface Methodology. Mechanika 21(5), 404–413. https://doi.org/10.5755/j01.mech.21.5.11964 (2015). es_ES
dc.description.references Khanna, N. K. et al. Methodology to determine optimum suspension hard points at an early. Design stage for achieving steering returnability in any vehicle. SAE Tech. Pap. https://doi.org/10.4271/2019-26-0074 (2019). es_ES
dc.description.references Masilamani, R., Kumar, P. L., Krishnaraj, C. & Dhinesh, S. A review on enhancing the design and analysis of steering wheel by reducing the ratio. Int. J. Pure Appl. Math. 118(11), 251–255. https://doi.org/10.12732/ijpam.v118i11.31 (2018). es_ES
dc.description.references Jiregna, I. & Sirata, G. A review of the vehicle suspension system. J. Mech. Energy Eng. 4(44), 109–114. https://doi.org/10.30464/jmee.2020.4.2.109 (2020). es_ES
dc.description.references Kolekar, A., Mulani, S. M., Nerkar, A. & Borchate, S. Review on steering mechanism. Int. J. Sci. Adv. Res. Technol. 3(4), 95525. https://doi.org/10.13140/RG.2.2.17787.95525 (2017). es_ES
dc.description.references Mahale, R., Jaiswar, M., Gupta, G. & Kumar, A. Design of steering gear system in passenger Car: A review. Int. Res. J. Eng. Technol. 5(1), 1564–1570 (2018). es_ES
dc.description.references Elsawaf, A. & Vampola, T. Passive suspension system optimization using PSO to enhance ride comfort when crossing different types of speed control profiles. J. Traffic Transp. Eng. 3(2), 129–135. https://doi.org/10.12720/jtle.3.2.129-135 (2015). es_ES
dc.description.references Fossati, G. G., Miguel, L. F. F. & Casas, W. J. P. Multi-objective optimization of the suspension system parameters of a full vehicle model. Optim. Eng. 20(1), 151–177. https://doi.org/10.1007/s11081-018-9403-8 (2019). es_ES
dc.description.references Beiranvand, V. & Warren, H. Best practices for comparing optimization algorithms. Optim. Eng. 18, 815–848. https://doi.org/10.1007/s11081-017-9366-1 (2017). es_ES
dc.description.references ChunYan, W., YuQi, Z. & WanZhong, Z. Multi-objective optimization of a steering system considering steering modality. Adv. Eng. Softw. 126, 61–74. https://doi.org/10.1016/j.advengsoft.2018.09.012 (2018). es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem