- -

Evaluation of low-power devices for smart greenhouse development

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Evaluation of low-power devices for smart greenhouse development

Mostrar el registro completo del ítem

Morales-García, J.; Bueno-Crespo, A.; Martínez-España, R.; Posadas-Yagüe, J.; Manzoni, P.; Cecilia-Canales, JM. (2023). Evaluation of low-power devices for smart greenhouse development. The Journal of Supercomputing. 79:10277-10299. https://doi.org/10.1007/s11227-023-05076-8

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/200863

Ficheros en el ítem

Metadatos del ítem

Título: Evaluation of low-power devices for smart greenhouse development
Autor: Morales-García, Juan Bueno-Crespo, Andrés Martínez-España, Raquel Posadas-Yagüe, Juan-Luis Manzoni, Pietro Cecilia-Canales, José María
Entidad UPV: Universitat Politècnica de València. Escola Tècnica Superior d'Enginyeria Informàtica
Universitat Politècnica de València. Departamento de Informática de Sistemas y Computadores - Departament d'Informàtica de Sistemes i Computadors
Fecha difusión:
Resumen:
[EN] The combination of Artificial Intelligence and the Internet of Things (AIoT) is enabling the next economic revolution in which data and immediacy are at the key players. Agriculture is one of the sectors that can ...[+]
Palabras clave: Artificial Intelligence , Edge computing , Time series forecast , TinyML , CPU-GPU Performance , Power consumption
Derechos de uso: Reserva de todos los derechos
Fuente:
The Journal of Supercomputing. (issn: 0920-8542 )
DOI: 10.1007/s11227-023-05076-8
Editorial:
Springer-Verlag
Versión del editor: https://doi.org/10.1007/s11227-023-05076-8
Código del Proyecto:
info:eu-repo/grantAgreement/MICINN//RTC-2019-007159-5//DESARROLLO DE INFRAESTRUCTURAS IOT DE ALTAS PRESTACIONES CONTRA EL CAMBIO CLIMÁTICO BASADAS EN INTELIGENCIA ARTIFICIAL/
info:eu-repo/grantAgreement/MICINN//RYC-2018-025580-I//AYUDA ADICIONAL RAMON Y CAJAL/
Agradecimientos:
This work is derived from R & D projects RTC2019-007159-5, as well as the Ramon y Cajal Grant RYC2018-025580-I, funded by MCIN/AEI/10.13039/501100011033, "FSE invest in your future" and "ERDF A way of making Europe".
Tipo: Artículo

References

Feki MA, Kawsar F, Boussard M, Trappeniers L (2013) The internet of things: the next technological revolution. Computer 46(2):24–25

Gubbi J, Buyya R, Marusic S, Palaniswami M (2013) Internet of things (iot): a vision, architectural elements, and future directions. Futur Gener Comput Syst 29(7):1645–1660

Tahsien SM, Karimipour H, Spachos P (2020) Machine learning based solutions for security of internet of things (iot): a survey. J Netw Comput Appl 161:102630 [+]
Feki MA, Kawsar F, Boussard M, Trappeniers L (2013) The internet of things: the next technological revolution. Computer 46(2):24–25

Gubbi J, Buyya R, Marusic S, Palaniswami M (2013) Internet of things (iot): a vision, architectural elements, and future directions. Futur Gener Comput Syst 29(7):1645–1660

Tahsien SM, Karimipour H, Spachos P (2020) Machine learning based solutions for security of internet of things (iot): a survey. J Netw Comput Appl 161:102630

Papadokostaki K, Mastorakis G, Panagiotakis S, Mavromoustakis CX, Dobre, C, Batalla JM (2017) Handling big data in the era of internet of things (IoT). Springer

Satyanarayanan M (2017) The emergence of edge computing. Computer 50(1):30–39

Capra M, Peloso R, Masera G, Ruo Roch M, Martina M (2019) Edge computing: a survey on the hardware requirements in the internet of things world. Future Internet 11(4):100

Warden P, Situnayake D (2019) TinyML. O’Reilly Media, Incorporated

Portilla J, Mujica G, Lee J-S, Riesgo T (2019) The extreme edge at the bottom of the internet of things: a review. IEEE Sens J 19(9):3179–3190

Deng L, Yu D (2014) Deep learning: methods and applications. Found Trends Signal Process 7(3–4):197–387

Guillén-Navarro M, Martínez-España R, Bueno-Crespo A, Ayuso B, Moreno JL, Cecilia JM (2019) An LSTM deep learning scheme for prediction of low temperatures in agriculture. IOS Press, Amsterdam, pp 130–138

Sutton RS, Barto AG (2018) Reinforcement learning: an introduction. MIT Press, Cambridge

Abhishek K, Singh M, Ghosh S, Anand A (2012) Weather forecasting model using artificial neural network. Procedia Technol 4:311–318

Lee S, Lee Y-S, Son Y (2020) Forecasting daily temperatures with different time interval data using deep neural networks. Appl Sci 10:1609

Zhang Z, Dong Y (2020) Temperature forecasting via convolutional recurrent neural networks based on time-series data. Complexity

Jung D-H, Kim HS, Jhin C, Kim H-J, Park SH (2020) Time-serial analysis of deep neural network models for prediction of climatic conditions inside a greenhouse. Comput Electron Agric 173:105402

Codeluppi G, Cilfone A, Davoli L, Ferrari G Ai at the edge: a smart gateway for greenhouse air temperature forecasting. In: 2020 IEEE international workshop on metrology for agriculture and forestry (MetroAgriFor), pp 348–353. IEEE

Guillén MA, Llanes A, Imbernón B, Martínez-España R, Bueno-Crespo A, Cano J-C, Cecilia JM (2021) Performance evaluation of edge-computing platforms for the prediction of low temperatures in agriculture using deep learning. J Supercomput 77(1):818–840

Codeluppi G, Davoli L, Ferrari G (2021) Forecasting air temperature on edge devices with embedded AI. Sensors 21(12):3973

Chang Z, Liu S, Xiong X, Cai Z, Tu G (2021) A survey of recent advances in edge-computing-powered artificial intelligence of things. IEEE Internet of Things J

Dubey AK, Kumar A, García-Díaz V, Sharma AK, Kanhaiya K (2021) Study and analysis of SARIMA and LSTM in forecasting time series data. Sustain Energy Technol Assess 47:101474

Seshadri K, Akin B, Laudon J, Narayanaswami R, Yazdanbakhsh A (2021) An evaluation of edge tpu accelerators for convolutional neural networks. arXiv preprint arXiv:2102.10423

Rashid N, Demirel BU, Al Faruque MA (2022) Ahar: Adaptive cnn for energy-efficient human activity recognition in low-power edge devices. IEEE Internet of Things J

Cruz M, Mafra S, Teixeira E, Figueiredo F (2022) Smart strawberry farming using edge computing and IOT. Sensors 22(15):5866

Feng B, Ding Z, Jiang C (2022) Fast: A forecasting model with adaptive sliding window and time locality integration for dynamic cloud workloads. IEEE Trans Serv Comput

Ding Z, Feng B, Jiang C (2022) Coin: a container workload prediction model focusing on common and individual changes in workloads. IEEE Trans Parallel Distrib Syst 33(12):4738–4751

Alongi F, Ghielmetti N, Pau D, Terraneo F, Fornaciari W (2020) Tiny neural networks for environmental predictions: an integrated approach with miosix. In: 2020 IEEE International Conference on Smart Computing (SMARTCOMP), pp 350–355. IEEE

Pettit A (1979) A non-parametric approach to the change-point problem. Appl Stat 28(2):126–135

Bishop CM et al (1995) Neural networks for pattern recognition. Oxford University Press, Oxford

Tadeusiewicz R (1995) Neural networks: a comprehensive foundation: by Simon HAYKIN; Macmillan College Publishing, New York, USA; IEEE Press, New York, USA; IEEE Computer Society Press, Los Alamitos, CA, USA; 1994; 696 pp 69–95; ISBN: 0-02-352761-7. Pergamon

Li Y, Hao Z, Lei H (2016) Survey of convolutional neural network. J Comput Appl 36(9):2508

Sahu M, Dash R (2021) A survey on deep learning: convolution neural network (CNN). Springer, Berlin

Tensorflow: Tensorflow lite for microcontrollers. https://www.tensorflow.org/lite/microcontrollers. Accessed 2021-07-06

Inc MT: PAC1934 USB C POWERMETER. https://www.microchip.com/en-us/development-tool/ADM00921

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem