- -

Evaluation of low-power devices for smart greenhouse development

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Evaluation of low-power devices for smart greenhouse development

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Morales-García, Juan es_ES
dc.contributor.author Bueno-Crespo, Andrés es_ES
dc.contributor.author Martínez-España, Raquel es_ES
dc.contributor.author Posadas-Yagüe, Juan-Luis es_ES
dc.contributor.author Manzoni, Pietro es_ES
dc.contributor.author Cecilia-Canales, José María es_ES
dc.date.accessioned 2023-12-18T19:05:22Z
dc.date.available 2023-12-18T19:05:22Z
dc.date.issued 2023-02 es_ES
dc.identifier.issn 0920-8542 es_ES
dc.identifier.uri http://hdl.handle.net/10251/200863
dc.description.abstract [EN] The combination of Artificial Intelligence and the Internet of Things (AIoT) is enabling the next economic revolution in which data and immediacy are at the key players. Agriculture is one of the sectors that can benefit most from the use of AIoT to optimise resources and reduce its environmental footprint. However, this convergence requires computational resources that enable the execution of AI workloads, and in the context of agriculture, ensuring autonomous operation and low energy consumption. In this work, we evaluate TinyML and edge computing platforms to predict the indoor temperature of an operational greenhouse in situ. In particular, the computational/energy trade-off of these platforms is assessed to analyse whether their use in this context is feasible. Two artificial neural networks are adapted to these platforms to predict the indoor temperature of the greenhouse. Our results show that the microcontroller-based devices can offer a competitive and energy-efficient computational alternative to more traditional edge computing approaches for lightweight ML workloads. es_ES
dc.description.sponsorship This work is derived from R & D projects RTC2019-007159-5, as well as the Ramon y Cajal Grant RYC2018-025580-I, funded by MCIN/AEI/10.13039/501100011033, "FSE invest in your future" and "ERDF A way of making Europe". es_ES
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof The Journal of Supercomputing es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Artificial Intelligence es_ES
dc.subject Edge computing es_ES
dc.subject Time series forecast es_ES
dc.subject TinyML es_ES
dc.subject CPU-GPU Performance es_ES
dc.subject Power consumption es_ES
dc.subject.classification ARQUITECTURA Y TECNOLOGIA DE COMPUTADORES es_ES
dc.title Evaluation of low-power devices for smart greenhouse development es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s11227-023-05076-8 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//RTC-2019-007159-5//DESARROLLO DE INFRAESTRUCTURAS IOT DE ALTAS PRESTACIONES CONTRA EL CAMBIO CLIMÁTICO BASADAS EN INTELIGENCIA ARTIFICIAL/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//RYC-2018-025580-I//AYUDA ADICIONAL RAMON Y CAJAL/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escola Tècnica Superior d'Enginyeria Informàtica es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Informática de Sistemas y Computadores - Departament d'Informàtica de Sistemes i Computadors es_ES
dc.description.bibliographicCitation Morales-García, J.; Bueno-Crespo, A.; Martínez-España, R.; Posadas-Yagüe, J.; Manzoni, P.; Cecilia-Canales, JM. (2023). Evaluation of low-power devices for smart greenhouse development. The Journal of Supercomputing. 79:10277-10299. https://doi.org/10.1007/s11227-023-05076-8 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1007/s11227-023-05076-8 es_ES
dc.description.upvformatpinicio 10277 es_ES
dc.description.upvformatpfin 10299 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 79 es_ES
dc.relation.pasarela S\500876 es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.description.references Feki MA, Kawsar F, Boussard M, Trappeniers L (2013) The internet of things: the next technological revolution. Computer 46(2):24–25 es_ES
dc.description.references Gubbi J, Buyya R, Marusic S, Palaniswami M (2013) Internet of things (iot): a vision, architectural elements, and future directions. Futur Gener Comput Syst 29(7):1645–1660 es_ES
dc.description.references Tahsien SM, Karimipour H, Spachos P (2020) Machine learning based solutions for security of internet of things (iot): a survey. J Netw Comput Appl 161:102630 es_ES
dc.description.references Papadokostaki K, Mastorakis G, Panagiotakis S, Mavromoustakis CX, Dobre, C, Batalla JM (2017) Handling big data in the era of internet of things (IoT). Springer es_ES
dc.description.references Satyanarayanan M (2017) The emergence of edge computing. Computer 50(1):30–39 es_ES
dc.description.references Capra M, Peloso R, Masera G, Ruo Roch M, Martina M (2019) Edge computing: a survey on the hardware requirements in the internet of things world. Future Internet 11(4):100 es_ES
dc.description.references Warden P, Situnayake D (2019) TinyML. O’Reilly Media, Incorporated es_ES
dc.description.references Portilla J, Mujica G, Lee J-S, Riesgo T (2019) The extreme edge at the bottom of the internet of things: a review. IEEE Sens J 19(9):3179–3190 es_ES
dc.description.references Deng L, Yu D (2014) Deep learning: methods and applications. Found Trends Signal Process 7(3–4):197–387 es_ES
dc.description.references Guillén-Navarro M, Martínez-España R, Bueno-Crespo A, Ayuso B, Moreno JL, Cecilia JM (2019) An LSTM deep learning scheme for prediction of low temperatures in agriculture. IOS Press, Amsterdam, pp 130–138 es_ES
dc.description.references Sutton RS, Barto AG (2018) Reinforcement learning: an introduction. MIT Press, Cambridge es_ES
dc.description.references Abhishek K, Singh M, Ghosh S, Anand A (2012) Weather forecasting model using artificial neural network. Procedia Technol 4:311–318 es_ES
dc.description.references Lee S, Lee Y-S, Son Y (2020) Forecasting daily temperatures with different time interval data using deep neural networks. Appl Sci 10:1609 es_ES
dc.description.references Zhang Z, Dong Y (2020) Temperature forecasting via convolutional recurrent neural networks based on time-series data. Complexity es_ES
dc.description.references Jung D-H, Kim HS, Jhin C, Kim H-J, Park SH (2020) Time-serial analysis of deep neural network models for prediction of climatic conditions inside a greenhouse. Comput Electron Agric 173:105402 es_ES
dc.description.references Codeluppi G, Cilfone A, Davoli L, Ferrari G Ai at the edge: a smart gateway for greenhouse air temperature forecasting. In: 2020 IEEE international workshop on metrology for agriculture and forestry (MetroAgriFor), pp 348–353. IEEE es_ES
dc.description.references Guillén MA, Llanes A, Imbernón B, Martínez-España R, Bueno-Crespo A, Cano J-C, Cecilia JM (2021) Performance evaluation of edge-computing platforms for the prediction of low temperatures in agriculture using deep learning. J Supercomput 77(1):818–840 es_ES
dc.description.references Codeluppi G, Davoli L, Ferrari G (2021) Forecasting air temperature on edge devices with embedded AI. Sensors 21(12):3973 es_ES
dc.description.references Chang Z, Liu S, Xiong X, Cai Z, Tu G (2021) A survey of recent advances in edge-computing-powered artificial intelligence of things. IEEE Internet of Things J es_ES
dc.description.references Dubey AK, Kumar A, García-Díaz V, Sharma AK, Kanhaiya K (2021) Study and analysis of SARIMA and LSTM in forecasting time series data. Sustain Energy Technol Assess 47:101474 es_ES
dc.description.references Seshadri K, Akin B, Laudon J, Narayanaswami R, Yazdanbakhsh A (2021) An evaluation of edge tpu accelerators for convolutional neural networks. arXiv preprint arXiv:2102.10423 es_ES
dc.description.references Rashid N, Demirel BU, Al Faruque MA (2022) Ahar: Adaptive cnn for energy-efficient human activity recognition in low-power edge devices. IEEE Internet of Things J es_ES
dc.description.references Cruz M, Mafra S, Teixeira E, Figueiredo F (2022) Smart strawberry farming using edge computing and IOT. Sensors 22(15):5866 es_ES
dc.description.references Feng B, Ding Z, Jiang C (2022) Fast: A forecasting model with adaptive sliding window and time locality integration for dynamic cloud workloads. IEEE Trans Serv Comput es_ES
dc.description.references Ding Z, Feng B, Jiang C (2022) Coin: a container workload prediction model focusing on common and individual changes in workloads. IEEE Trans Parallel Distrib Syst 33(12):4738–4751 es_ES
dc.description.references Alongi F, Ghielmetti N, Pau D, Terraneo F, Fornaciari W (2020) Tiny neural networks for environmental predictions: an integrated approach with miosix. In: 2020 IEEE International Conference on Smart Computing (SMARTCOMP), pp 350–355. IEEE es_ES
dc.description.references Pettit A (1979) A non-parametric approach to the change-point problem. Appl Stat 28(2):126–135 es_ES
dc.description.references Bishop CM et al (1995) Neural networks for pattern recognition. Oxford University Press, Oxford es_ES
dc.description.references Tadeusiewicz R (1995) Neural networks: a comprehensive foundation: by Simon HAYKIN; Macmillan College Publishing, New York, USA; IEEE Press, New York, USA; IEEE Computer Society Press, Los Alamitos, CA, USA; 1994; 696 pp 69–95; ISBN: 0-02-352761-7. Pergamon es_ES
dc.description.references Li Y, Hao Z, Lei H (2016) Survey of convolutional neural network. J Comput Appl 36(9):2508 es_ES
dc.description.references Sahu M, Dash R (2021) A survey on deep learning: convolution neural network (CNN). Springer, Berlin es_ES
dc.description.references Tensorflow: Tensorflow lite for microcontrollers. https://www.tensorflow.org/lite/microcontrollers. Accessed 2021-07-06 es_ES
dc.description.references Inc MT: PAC1934 USB C POWERMETER. https://www.microchip.com/en-us/development-tool/ADM00921 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem