- -

Silica nanoparticles functionalised with cation coordination sites and fluorophores for the differential sensing of anions in a quencher displacement assay (QDA)

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Silica nanoparticles functionalised with cation coordination sites and fluorophores for the differential sensing of anions in a quencher displacement assay (QDA)

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Calero Rodríguez, María del Pilar es_ES
dc.contributor.author Hecht, Mandy es_ES
dc.contributor.author Martínez Mañez, Ramón es_ES
dc.contributor.author Sancenón Galarza, Félix es_ES
dc.contributor.author Soto Camino, Juan es_ES
dc.contributor.author Vivancos, José-Luís es_ES
dc.contributor.author Rurack, Knut es_ES
dc.date.accessioned 2013-04-16T06:11:13Z
dc.date.available 2013-04-16T06:11:13Z
dc.date.issued 2011
dc.identifier.issn 1359-7345
dc.identifier.uri http://hdl.handle.net/10251/27847
dc.description.abstract In conjunction with quenching metal ions, silica nanoparticles carrying terpyridine coordination sites and sulforhodamine B signalling units were employed for the differential fluorometric recognition of anions. © 2011 The Royal Society of Chemistry. es_ES
dc.language Español es_ES
dc.publisher Royal Society of Chemistry
dc.relation.ispartof Chemical Communications es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Anion es_ES
dc.subject Cupric ion es_ES
dc.subject Ferric ion es_ES
dc.subject Lead es_ES
dc.subject Mercury es_ES
dc.subject Nanoparticle es_ES
dc.subject Nickel es_ES
dc.subject Pyridine derivative es_ES
dc.subject Silicon dioxide es_ES
dc.subject Sulforhodamine B es_ES
dc.subject Terpyridine es_ES
dc.subject Terpyridine sulforhodamine functionalized silica nanoparticle es_ES
dc.subject Unclassified drug es_ES
dc.subject Article es_ES
dc.subject Assay es_ES
dc.subject Binding site es_ES
dc.subject Controlled study es_ES
dc.subject Fluorescence es_ES
dc.subject Fluorometry es_ES
dc.subject Molecular recognition es_ES
dc.subject Particle size es_ES
dc.subject Quencher displacement assay es_ES
dc.subject Anions es_ES
dc.subject Cations es_ES
dc.subject Fluorescent Dyes es_ES
dc.subject Nanoparticles es_ES
dc.subject Pyridines es_ES
dc.subject Rhodamines es_ES
dc.subject.classification PROYECTOS DE INGENIERIA es_ES
dc.subject.classification QUIMICA INORGANICA es_ES
dc.subject.classification QUIMICA ORGANICA es_ES
dc.title Silica nanoparticles functionalised with cation coordination sites and fluorophores for the differential sensing of anions in a quencher displacement assay (QDA) es_ES
dc.type Artículo es_ES
dc.embargo.lift 10000-01-01
dc.embargo.terms forever
dc.identifier.doi 10.1039/C1CC13039K
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Proyectos de Ingeniería - Departament de Projectes d'Enginyeria es_ES
dc.description.bibliographicCitation Calero Rodriguez, MDP.; Hecht, M.; Martínez Mañez, R.; Sancenón Galarza, F.; Soto Camino, J.; Vivancos, J.; Rurack, K. (2011). Silica nanoparticles functionalised with cation coordination sites and fluorophores for the differential sensing of anions in a quencher displacement assay (QDA). Chemical Communications. 47(38):10599-10601. doi:10.1039/C1CC13039K es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://pubs.rsc.org/en/content/articlepdf/2011/cc/c1cc13039k es_ES
dc.description.upvformatpinicio 10599 es_ES
dc.description.upvformatpfin 10601 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 47 es_ES
dc.description.issue 38 es_ES
dc.relation.senia 193972
dc.description.references Schmidtchen, F. P., & Berger, M. (1997). Artificial Organic Host Molecules for Anions. Chemical Reviews, 97(5), 1609-1646. doi:10.1021/cr9603845 es_ES
dc.description.references Beer, P. D., & Gale, P. A. (2001). Anion Recognition and Sensing: The State of the Art and Future Perspectives. Angewandte Chemie International Edition, 40(3), 486-516. doi:10.1002/1521-3773(20010202)40:3<486::aid-anie486>3.0.co;2-p es_ES
dc.description.references Gunnlaugsson, T., Glynn, M., Tocci (née Hussey), G. M., Kruger, P. E., & Pfeffer, F. M. (2006). Anion recognition and sensing in organic and aqueous media using luminescent and colorimetric sensors. Coordination Chemistry Reviews, 250(23-24), 3094-3117. doi:10.1016/j.ccr.2006.08.017 es_ES
dc.description.references Wiskur, S. L., Ait-Haddou, H., Lavigne, J. J., & Anslyn, E. V. (2001). Teaching Old Indicators New Tricks. Accounts of Chemical Research, 34(12), 963-972. doi:10.1021/ar9600796 es_ES
dc.description.references Martínez-Máñez, R., & Sancenón, F. (2003). Fluorogenic and Chromogenic Chemosensors and Reagents for Anions. Chemical Reviews, 103(11), 4419-4476. doi:10.1021/cr010421e es_ES
dc.description.references Moragues, M. E., Martínez-Máñez, R., & Sancenón, F. (2011). Chromogenic and fluorogenic chemosensors and reagents for anions. A comprehensive review of the year 2009. Chemical Society Reviews, 40(5), 2593. doi:10.1039/c0cs00015a es_ES
dc.description.references Descalzo, A. B., Martínez-Máñez, R., Sancenón, F., Hoffmann, K., & Rurack, K. (2006). The Supramolecular Chemistry of Organic–Inorganic Hybrid Materials. Angewandte Chemie International Edition, 45(36), 5924-5948. doi:10.1002/anie.200600734 es_ES
dc.description.references Martínez-Máñez, R., & Sancenón, F. (2006). Chemodosimeters and 3D inorganic functionalised hosts for the fluoro-chromogenic sensing of anions. Coordination Chemistry Reviews, 250(23-24), 3081-3093. doi:10.1016/j.ccr.2006.04.016 es_ES
dc.description.references Shenhar, R., & Rotello, V. M. (2003). Nanoparticles:  Scaffolds and Building Blocks. Accounts of Chemical Research, 36(7), 549-561. doi:10.1021/ar020083j es_ES
dc.description.references Beck, C., Härtl, W., & Hempelmann, R. (1999). Covalent Surface Functionalization and Self-Organization of Silica Nanoparticles. Angewandte Chemie International Edition, 38(9), 1297-1300. doi:10.1002/(sici)1521-3773(19990503)38:9<1297::aid-anie1297>3.0.co;2-9 es_ES
dc.description.references Ludden, M. J. W., Reinhoudt, D. N., & Huskens, J. (2006). Molecular printboards: versatile platforms for the creation and positioning of supramolecular assemblies and materials. Chemical Society Reviews, 35(11), 1122. doi:10.1039/b600093m es_ES
dc.description.references Mendes, P. M. (2008). Stimuli-responsive surfaces for bio-applications. Chemical Society Reviews, 37(11), 2512. doi:10.1039/b714635n es_ES
dc.description.references Rampazzo, E., Brasola, E., Marcuz, S., Mancin, F., Tecilla, P., & Tonellato, U. (2005). Surface modification of silica nanoparticles: a new strategy for the realization of self-organized fluorescence chemosensors. Journal of Materials Chemistry, 15(27-28), 2687. doi:10.1039/b502052b es_ES
dc.description.references Crego-Calama, M., & Reinhoudt, D. N. (2001). New Materials for Metal Ion Sensing by Self-Assembled Monolayers on Glass. Advanced Materials, 13(15), 1171-1174. doi:10.1002/1521-4095(200108)13:15<1171::aid-adma1171>3.0.co;2-7 es_ES
dc.description.references Calero, P., Aznar, E., Lloris, J. M., Marcos, M. D., Martínez-Máñez, R., Ros-Lis, J. V., … Sancenón, F. (2008). Chromogenic silica nanoparticles for the colorimetric sensing of long-chain carboxylates. Chemical Communications, (14), 1668. doi:10.1039/b718690h es_ES
dc.description.references Basabe-Desmonts, L., Beld, J., Zimmerman, R. S., Hernando, J., Mela, P., García Parajó, M. F., … Crego-Calama, M. (2004). A Simple Approach to Sensor Discovery and Fabrication on Self-Assembled Monolayers on Glass. Journal of the American Chemical Society, 126(23), 7293-7299. doi:10.1021/ja049901o es_ES
dc.description.references Ros-Lis, J. V., Marcos, M. D., Mártinez-Máñez, R., Rurack, K., & Soto, J. (2005). A Regenerative Chemodosimeter Based on Metal-Induced Dye Formation for the Highly Selective and Sensitive Optical Determination of Hg2+ Ions. Angewandte Chemie International Edition, 44(28), 4405-4407. doi:10.1002/anie.200500583 es_ES
dc.description.references Ros-Lis, J. V., Casasús, R., Comes, M., Coll, C., Marcos, M. D., Martínez-Máñez, R., … Rurack, K. (2008). A Mesoporous 3D Hybrid Material with Dual Functionality for Hg2+Detection and Adsorption. Chemistry - A European Journal, 14(27), 8267-8278. doi:10.1002/chem.200800632 es_ES
dc.description.references Rurack, K. (2001). Flipping the light switch ‘ON’ – the design of sensor molecules that show cation-induced fluorescence enhancement with heavy and transition metal ions. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 57(11), 2161-2195. doi:10.1016/s1386-1425(01)00492-9 es_ES
dc.description.references García-Acosta, B., Albiach-Martí, X., García, E., Gil, L., Martínez-Máñez, R., Rurack, K., … Soto, J. (2004). Coordinative and electrostatic forces in action: from the design of differential chromogenic anion sensors to selective carboxylate recognition. Chem. Commun., (7), 774-775. doi:10.1039/b314997h es_ES
dc.description.references García-Acosta, B., Martínez-Máñez, R., Sancenón, F., Soto, J., Rurack, K., Spieles, M., … Gil, L. (2007). Ditopic N-Crowned 4-(p-Aminophenyl)-2,6-diphenylpyridines:  Implications of Macrocycle Topology on the Spectroscopic Properties, Cation Complexation, and Differential Anion Responses. Inorganic Chemistry, 46(8), 3123-3135. doi:10.1021/ic062069z es_ES
dc.description.references Umali, A. P., & Anslyn, E. V. (2010). A general approach to differential sensing using synthetic molecular receptors. Current Opinion in Chemical Biology, 14(6), 685-692. doi:10.1016/j.cbpa.2010.07.022 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem