- -

Alumina-carbon nanofibers nanocomposites obtained by spark plasma sintering for proton exchange membrane fuel cell bipolar plates

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Alumina-carbon nanofibers nanocomposites obtained by spark plasma sintering for proton exchange membrane fuel cell bipolar plates

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Borrell Tomás, María Amparo es_ES
dc.contributor.author Torrecillas, Ramón es_ES
dc.contributor.author Rocha, Victoria G. es_ES
dc.contributor.author Fernández, Adolfo es_ES
dc.date.accessioned 2013-04-22T12:50:35Z
dc.date.issued 2012-08
dc.identifier.issn 1615-6846
dc.identifier.uri http://hdl.handle.net/10251/28111
dc.description.abstract [EN] There is an increasing demand of multifunctional materials for a wide variety of technological developments. Bipolar plates for proton exchange membrane fuel cells are an example of complex functionality components that must show among other properties high mechanical strength, electrical, and thermal conductivity. The present research explored the possibility of using alumina¿carbon nanofibers (CNFs) nanocomposites for this purpose. In this study, it was studied for the first time the whole range of powder compositions in this system. Homogeneous powders mixtures were prepared and subsequently sintered by spark plasma sintering. The materials obtained were thoroughly characterized and compared in terms of properties required to be used as bipolar plates. The control on material microstructure and composition allows designing materials where mechanical or electrical performances are enhanced. A 50/50¿vol.% alumina¿CNFs composite appears to be a very promising material for this kind of application. es_ES
dc.description.sponsorship This work has been carried out with financial support of National Plan Projects MAT2006-01783 and MAT2007-30989-E and the Regional Project FICYT PC07-021. A. Borrell, acknowledges the Spanish Ministry of Science and Innovation for Ph.D. grant.
dc.language Español es_ES
dc.publisher Wiley-VCH Verlag es_ES
dc.relation.ispartof Fuel Cells es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Bipolar plates es_ES
dc.subject Carbon Nanofibers es_ES
dc.subject Nanocomposites es_ES
dc.subject Spark plasma sintering es_ES
dc.subject.classification CIENCIA DE LOS MATERIALES E INGENIERIA METALURGICA es_ES
dc.title Alumina-carbon nanofibers nanocomposites obtained by spark plasma sintering for proton exchange membrane fuel cell bipolar plates es_ES
dc.type Artículo es_ES
dc.embargo.lift 10000-01-01
dc.embargo.terms forever es_ES
dc.identifier.doi 10.1002/fuce.201100042
dc.relation.projectID info:eu-repo/grantAgreement/MEC//MAT2006-01783/ES/MATERIALES CERAMICOS NANOESTRUCTURADOS TRANSPARENTES PARA APLICACIONES OPTICAS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/FICYT//PC07-021/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MEC//MAT2007-30989-E/ES/CERCANANO/
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Aplicaciones de las Tecnologías de la Información - Institut Universitari d'Aplicacions de les Tecnologies de la Informació es_ES
dc.description.bibliographicCitation Borrell Tomás, MA.; Torrecillas, R.; Rocha, VG.; Fernández, A. (2012). Alumina-carbon nanofibers nanocomposites obtained by spark plasma sintering for proton exchange membrane fuel cell bipolar plates. Fuel Cells. 12(4):599-605. https://doi.org/10.1002/fuce.201100042 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://onlinelibrary.wiley.com/doi/10.1002/fuce.201100042/pdf es_ES
dc.description.upvformatpinicio 599 es_ES
dc.description.upvformatpfin 605 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 12 es_ES
dc.description.issue 4 es_ES
dc.relation.senia 192837
dc.contributor.funder Fundación para el Fomento en Asturias de la Investigación Científica Aplicada y la Tecnología
dc.contributor.funder Ministerio de Educación y Ciencia es_ES
dc.description.references Carrette, L., Friedrich, K. A., & Stimming, U. (2000). Fuel Cells: Principles, Types, Fuels, and Applications. ChemPhysChem, 1(4), 162-193. doi:10.1002/1439-7641(20001215)1:4<162::aid-cphc162>3.0.co;2-z es_ES
dc.description.references Mehta, V., & Cooper, J. S. (2003). Review and analysis of PEM fuel cell design and manufacturing. Journal of Power Sources, 114(1), 32-53. doi:10.1016/s0378-7753(02)00542-6 es_ES
dc.description.references 2002 www.afdc.energy.gov/afdc/pdfs/racetothefuture.pdf es_ES
dc.description.references Steele, B. C. H., & Heinzel, A. (2001). Materials for fuel-cell technologies. Nature, 414(6861), 345-352. doi:10.1038/35104620 es_ES
dc.description.references Bar-On, I., Kirchain, R., & Roth, R. (2002). Technical cost analysis for PEM fuel cells. Journal of Power Sources, 109(1), 71-75. doi:10.1016/s0378-7753(02)00062-9 es_ES
dc.description.references Tsuchiya, H. (2004). Mass production cost of PEM fuel cell by learning curve. International Journal of Hydrogen Energy, 29(10), 985-990. doi:10.1016/j.ijhydene.2003.10.011 es_ES
dc.description.references HERMANN, A., CHAUDHURI, T., & SPAGNOL, P. (2005). Bipolar plates for PEM fuel cells: A review. International Journal of Hydrogen Energy, 30(12), 1297-1302. doi:10.1016/j.ijhydene.2005.04.016 es_ES
dc.description.references Wind, J., Späh, R., Kaiser, W., & Böhm, G. (2002). Metallic bipolar plates for PEM fuel cells. Journal of Power Sources, 105(2), 256-260. doi:10.1016/s0378-7753(01)00950-8 es_ES
dc.description.references Dhakate, S. R., Sharma, S., Borah, M., Mathur, R. B., & Dhami, T. L. (2008). Development and Characterization of Expanded Graphite-Based Nanocomposite as Bipolar Plate for Polymer Electrolyte Membrane Fuel Cells (PEMFCs). Energy & Fuels, 22(5), 3329-3334. doi:10.1021/ef800135f es_ES
dc.description.references Introduction to Glasses and Ceramic 1991 es_ES
dc.description.references Merkoçi, A. (2005). Carbon Nanotubes in Analytical Sciences. Microchimica Acta, 152(3-4), 157-174. doi:10.1007/s00604-005-0439-z es_ES
dc.description.references Groza, J. R., & Zavaliangos, A. (2000). Sintering activation by external electrical field. Materials Science and Engineering: A, 287(2), 171-177. doi:10.1016/s0921-5093(00)00771-1 es_ES
dc.description.references Wang, S.-Y., Wang, W., Wang, W.-Z., & Du, Y.-W. (2002). Preparation and characterization of highly oriented NiO(200) films by a pulse ultrasonic spray pyrolysis method. Materials Science and Engineering: B, 90(1-2), 133-137. doi:10.1016/s0921-5107(01)00922-9 es_ES
dc.description.references Ci, L., Wei, J., Wei, B., Liang, J., Xu, C., & Wu, D. (2001). Carbon nanofibers and single-walled carbon nanotubes prepared by the floating catalyst method. Carbon, 39(3), 329-335. doi:10.1016/s0008-6223(00)00126-3 es_ES
dc.description.references Kirstein, A. F., & Woolley, R. M. (1967). Symmetrical bending of thin circular elastic plates on equally spaced point supports. Journal of Research of the National Bureau of Standards, Section C: Engineering and Instrumentation, 71C(1), 1. doi:10.6028/jres.071c.002 es_ES
dc.description.references STM Annual Book of Standards 1996 es_ES
dc.description.references ANSTIS, G. R., CHANTIKUL, P., LAWN, B. R., & MARSHALL, D. B. (1981). A Critical Evaluation of Indentation Techniques for Measuring Fracture Toughness: I, Direct Crack Measurements. Journal of the American Ceramic Society, 64(9), 533-538. doi:10.1111/j.1151-2916.1981.tb10320.x es_ES
dc.description.references Borrell, A., Fernández, A., Merino, C., & Torrecillas, R. (2010). High density carbon materials obtained at relatively low temperature by spark plasma sintering of carbon nanofibers. International Journal of Materials Research, 101(1), 112-116. doi:10.3139/146.110246 es_ES
dc.description.references Yamamoto, G., Omori, M., Hashida, T., & Kimura, H. (2008). A novel structure for carbon nanotube reinforced alumina composites with improved mechanical properties. Nanotechnology, 19(31), 315708. doi:10.1088/0957-4484/19/31/315708 es_ES
dc.description.references Maensiri, S., Laokul, P., Klinkaewnarong, J., & Amornkitbamrung, V. (2007). Carbon nanofiber-reinforced alumina nanocomposites: Fabrication and mechanical properties. Materials Science and Engineering: A, 447(1-2), 44-50. doi:10.1016/j.msea.2006.08.009 es_ES
dc.description.references Hirota, K., Takaura, Y., Kato, M., & Miyamoto, Y. (2007). Fabrication of carbon nanofiber(CNF)-dispersed Al2O3 composites by pulsed electric-current pressure sintering and their mechanical and electrical properties. Journal of Materials Science, 42(13), 4792-4800. doi:10.1007/s10853-006-0830-0 es_ES
dc.description.references Borrell, A., Rocha, V. G., Torrecillas, R., & Fernández, A. (2011). Surface coating on carbon nanofibers with alumina precursor by different synthesis routes. Composites Science and Technology, 71(1), 18-22. doi:10.1016/j.compscitech.2010.09.011 es_ES
dc.description.references Hall, E. O. (1951). The Deformation and Ageing of Mild Steel: III Discussion of Results. Proceedings of the Physical Society. Section B, 64(9), 747-753. doi:10.1088/0370-1301/64/9/303 es_ES
dc.description.references www.schunk.pt/PT/catalogos/Placasbipolares Schunk_parapilhasdecombustivel.pdf 2009 es_ES
dc.description.references www.sglgroup.com/cms/international/products/product-groups/eg/ sigracetbipolar plates/index.html?locale=en 2009 es_ES
dc.description.references Wolf, H., & Willert-Porada, M. (2006). Electrically conductive LCP–carbon composite with low carbon content for bipolar plate application in polymer electrolyte membrane fuel cell. Journal of Power Sources, 153(1), 41-46. doi:10.1016/j.jpowsour.2005.03.182 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem