- -

Validation of a Phase-Mass Characterization Concept and Interface for Acoustic Biosensors

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Validation of a Phase-Mass Characterization Concept and Interface for Acoustic Biosensors

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Montagut, Yeison es_ES
dc.contributor.author García Narbón, José Vicente es_ES
dc.contributor.author Jiménez Jiménez, Yolanda es_ES
dc.contributor.author March Iborra, Mª Del Carmen es_ES
dc.contributor.author Montoya Baides, Ángel es_ES
dc.contributor.author Arnau Vives, Antonio es_ES
dc.date.accessioned 2013-05-14T11:40:31Z
dc.date.available 2013-05-14T11:40:31Z
dc.date.issued 2011
dc.identifier.issn 1424-8220
dc.identifier.uri http://hdl.handle.net/10251/28829
dc.description.abstract Acoustic wave resonator techniques are widely used in in-liquid biochemical applications. The main challenges remaining are the improvement of sensitivity and limit of detection, as well as multianalysis capabilities and reliability. The sensitivity improvement issue has been addressed by increasing the sensor frequency, using different techniques such as high fundamental frequency quartz crystal microbalances (QCMs), surface generated acoustic waves (SGAWs) and film bulk acoustic resonators (FBARs). However, this sensitivity improvement has not been completely matched in terms of limit of detection. The decrease on frequency stability due to the increase of the phase noise, particularly in oscillators, has made it impossible to increase the resolution. A new concept of sensor characterization at constant frequency has been recently proposed based on the phase/mass sensitivity equation: ¿¿/¿m ¿ -1/m L, where m L is the liquid mass perturbed by the resonator. The validation of the new concept is presented in this article. An immunosensor application for the detection of a low molecular weight pollutant, the insecticide carbaryl, has been chosen as a validation model. © 2011 by the authors; licensee MDPI, Basel, Switzerland. es_ES
dc.description.sponsorship The authors are grateful to the Spanish Ministry of Science and Technology the financial support to this research under contract reference AGL2009-13511, and to the company Advanced Wave Sensors S.L. (www.awsensors.com) for the help provided in the development of some parts of this work. en_EN
dc.language Inglés es_ES
dc.publisher MDPI es_ES
dc.relation.ispartof Sensors es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Acoustic biosensors es_ES
dc.subject High fundamental frequency QCM es_ES
dc.subject High resolution es_ES
dc.subject Microbalance es_ES
dc.subject Phase characterization es_ES
dc.subject Sensitivity es_ES
dc.subject Acoustics es_ES
dc.subject Article es_ES
dc.subject Genetic procedures es_ES
dc.subject Instrumentation es_ES
dc.subject Methodology es_ES
dc.subject Quartz crystal microbalance es_ES
dc.subject Biosensing Techniques es_ES
dc.subject Quartz Crystal Microbalance Techniques es_ES
dc.subject.classification TECNOLOGIA ELECTRONICA es_ES
dc.title Validation of a Phase-Mass Characterization Concept and Interface for Acoustic Biosensors es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/s110504702
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//AGL2009-13511/ES/Inmunosensor Piezoelectrico De Alta Frecuencia Para La Deteccion De Bisfenol-A Y Ftalatos En Alimentos Envasados/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Interuniversitario de Investigación en Bioingeniería y Tecnología Orientada al Ser Humano - Institut Interuniversitari d'Investigació en Bioenginyeria i Tecnologia Orientada a l'Ésser Humà es_ES
dc.description.bibliographicCitation Montagut, Y.; García Narbón, JV.; Jiménez Jiménez, Y.; March Iborra, MDC.; Montoya Baides, Á.; Arnau Vives, A. (2011). Validation of a Phase-Mass Characterization Concept and Interface for Acoustic Biosensors. Sensors. 11(5):4702-4720. https://doi.org/10.3390/s110504702 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.3390/s110504702 es_ES
dc.description.upvformatpinicio 4702 es_ES
dc.description.upvformatpfin 4720 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 11 es_ES
dc.description.issue 5 es_ES
dc.relation.senia 41500
dc.identifier.pmid 22163871 en_EN
dc.identifier.pmcid PMC3231406 en_EN
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.description.references Cote, G. L., Lec, R. M., & Pishko, M. V. (2003). Emerging biomedical sensing technologies and their applications. IEEE Sensors Journal, 3(3), 251-266. doi:10.1109/jsen.2003.814656 es_ES
dc.description.references Sauerbrey, G. (1959). Verwendung von Schwingquarzen zur W�gung d�nner Schichten und zur Mikrow�gung. Zeitschrift f�r Physik, 155(2), 206-222. doi:10.1007/bf01337937 es_ES
dc.description.references Keiji Kanazawa, K., & Gordon, J. G. (1985). The oscillation frequency of a quartz resonator in contact with liquid. Analytica Chimica Acta, 175, 99-105. doi:10.1016/s0003-2670(00)82721-x es_ES
dc.description.references Voinova, M. V., Jonson, M., & Kasemo, B. (2002). ‘Missing mass’ effect in biosensor’s QCM applications. Biosensors and Bioelectronics, 17(10), 835-841. doi:10.1016/s0956-5663(02)00050-7 es_ES
dc.description.references Kankare, J. (2002). Sauerbrey Equation of Quartz Crystal Microbalance in Liquid Medium. Langmuir, 18(18), 7092-7094. doi:10.1021/la025911w es_ES
dc.description.references Arnau, A., Jimenez, Y., Fernández, R., Torres, R., Otero, M., & Calvo, E. J. (2006). Viscoelastic Characterization of Electrochemically Prepared Conducting Polymer Films by Impedance Analysis at Quartz Crystal. Journal of The Electrochemical Society, 153(7), C455. doi:10.1149/1.2195893 es_ES
dc.description.references Lin, Z., Yip, C. M., Joseph, I. S., & Ward, M. D. (1993). Operation of an ultrasensitive 30-MHz quartz crystal microbalance in liquids. Analytical Chemistry, 65(11), 1546-1551. doi:10.1021/ac00059a011 es_ES
dc.description.references Janshoff, A., Galla, H.-J., & Steinem, C. (2000). Piezoelectric Mass-Sensing Devices as Biosensors—An Alternative to Optical Biosensors? Angewandte Chemie, 39(22), 4004-4032. doi:10.1002/1521-3773(20001117)39:22<4004::aid-anie4004>3.0.co;2-2 es_ES
dc.description.references Furtado, L. M., Su, H., Thompson, M., Mack, D. P., & Hayward, G. L. (1999). Interactions of HIV-1 TAR RNA with Tat-Derived Peptides Discriminated by On-Line Acoustic Wave Detector. Analytical Chemistry, 71(6), 1167-1175. doi:10.1021/ac980880o es_ES
dc.description.references Ben-Dov, I., Willner, I., & Zisman, E. (1997). Piezoelectric Immunosensors for Urine Specimens ofChlamydia trachomatisEmploying Quartz Crystal Microbalance Microgravimetric Analyses. Analytical Chemistry, 69(17), 3506-3512. doi:10.1021/ac970216s es_ES
dc.description.references Höök, F., Ray, A., Nordén, B., & Kasemo, B. (2001). Characterization of PNA and DNA Immobilization and Subsequent Hybridization with DNA Using Acoustic-Shear-Wave Attenuation Measurements. Langmuir, 17(26), 8305-8312. doi:10.1021/la0107704 es_ES
dc.description.references Hengerer, A., Kösslinger, C., Decker, J., Hauck, S., Queitsch, I., Wolf, H., & Dübel, S. (1999). Determination of Phage Antibody Affinities to Antigen by a Microbalance Sensor System. BioTechniques, 26(5), 956-964. doi:10.2144/99265rr05 es_ES
dc.description.references Zhou, X., Liu, L., Hu, M., Wang, L., & Hu, J. (2002). Detection of hepatitis B virus by piezoelectric biosensor. Journal of Pharmaceutical and Biomedical Analysis, 27(1-2), 341-345. doi:10.1016/s0731-7085(01)00538-6 es_ES
dc.description.references Fung, Y. S., & Wong, Y. Y. (2001). Self-Assembled Monolayers as the Coating in a Quartz Piezoelectric Crystal Immunosensor To Detect Salmonella in Aqueous Solution. Analytical Chemistry, 73(21), 5302-5309. doi:10.1021/ac010655y es_ES
dc.description.references Richert, L., Lavalle, P., Vautier, D., Senger, B., Stoltz, J.-F., Schaaf, P., … Picart, C. (2002). Cell Interactions with Polyelectrolyte Multilayer Films. Biomacromolecules, 3(6), 1170-1178. doi:10.1021/bm0255490 es_ES
dc.description.references Stobiecka, M., Cieśla, J., Janowska, B., Tudek, B., & Radecka, H. (2007). Piezoelectric Sensor for Determination of Genetically Modified Soybean Roundup Ready (R) in Samples not Amplified by PCR. Sensors, 7(8), 1462-1479. doi:10.3390/s7081462 es_ES
dc.description.references Ogi, H., Naga, H., Fukunishi, Y., Hirao, M., & Nishiyama, M. (2009). 170-MHz Electrodeless Quartz Crystal Microbalance Biosensor: Capability and Limitation of Higher Frequency Measurement. Analytical Chemistry, 81(19), 8068-8073. doi:10.1021/ac901267b es_ES
dc.description.references Tatsuma, T., Watanabe, Y., Oyama, N., Kitakizaki, K., & Haba, M. (1999). Multichannel Quartz Crystal Microbalance. Analytical Chemistry, 71(17), 3632-3636. doi:10.1021/ac9904260 es_ES
dc.description.references Bjurstrom, J., Wingqvist, G., & Katardjiev, I. (2006). Synthesis of textured thin piezoelectric AlN films with a nonzero C-axis mean tilt for the fabrication of shear mode resonators. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 53(11), 2095-2100. doi:10.1109/tuffc.2006.149 es_ES
dc.description.references Gabl, R., Feucht, H.-D., Zeininger, H., Eckstein, G., Schreiter, M., Primig, R., … Wersing, W. (2004). First results on label-free detection of DNA and protein molecules using a novel integrated sensor technology based on gravimetric detection principles. Biosensors and Bioelectronics, 19(6), 615-620. doi:10.1016/s0956-5663(03)00259-8 es_ES
dc.description.references Wingqvist, G., Bjurström, J., Liljeholm, L., Yantchev, V., & Katardjiev, I. (2007). Shear mode AlN thin film electro-acoustic resonant sensor operation in viscous media. Sensors and Actuators B: Chemical, 123(1), 466-473. doi:10.1016/j.snb.2006.09.028 es_ES
dc.description.references Wingqvist, G., Yantchev, V., & Katardjiev, I. (2008). Mass sensitivity of multilayer thin film resonant BAW sensors. Sensors and Actuators A: Physical, 148(1), 88-95. doi:10.1016/j.sna.2008.07.023 es_ES
dc.description.references Weber, J., Albers, W. M., Tuppurainen, J., Link, M., Gabl, R., Wersing, W., & Schreiter, M. (2006). Shear mode FBARs as highly sensitive liquid biosensors. Sensors and Actuators A: Physical, 128(1), 84-88. doi:10.1016/j.sna.2006.01.005 es_ES
dc.description.references Wingqvist, G., Anderson, H., Lennartsson, C., Weissbach, T., Yantchev, V., & Lloyd Spetz, A. (2009). On the applicability of high frequency acoustic shear mode biosensing in view of thickness limitations set by the film resonance. Biosensors and Bioelectronics, 24(11), 3387-3390. doi:10.1016/j.bios.2009.04.021 es_ES
dc.description.references Nirschl, M., Blüher, A., Erler, C., Katzschner, B., Vikholm-Lundin, I., Auer, S., … Mertig, M. (2009). Film bulk acoustic resonators for DNA and protein detection and investigation of in vitro bacterial S-layer formation. Sensors and Actuators A: Physical, 156(1), 180-184. doi:10.1016/j.sna.2009.02.021 es_ES
dc.description.references Bjurström, J., Wingqvist, G., Yantchev, V., & Katardjiev, I. (2007). Temperature compensation of liquid FBAR sensors. Journal of Micromechanics and Microengineering, 17(3), 651-658. doi:10.1088/0960-1317/17/3/030 es_ES
dc.description.references Länge, K., Rapp, B. E., & Rapp, M. (2008). Surface acoustic wave biosensors: a review. Analytical and Bioanalytical Chemistry, 391(5), 1509-1519. doi:10.1007/s00216-008-1911-5 es_ES
dc.description.references Gronewold, T. M. A. (2007). Surface acoustic wave sensors in the bioanalytical field: Recent trends and challenges. Analytica Chimica Acta, 603(2), 119-128. doi:10.1016/j.aca.2007.09.056 es_ES
dc.description.references Fu, Y. Q., Luo, J. K., Du, X. Y., Flewitt, A. J., Li, Y., Markx, G. H., … Milne, W. I. (2010). Recent developments on ZnO films for acoustic wave based bio-sensing and microfluidic applications: a review. Sensors and Actuators B: Chemical, 143(2), 606-619. doi:10.1016/j.snb.2009.10.010 es_ES
dc.description.references Rocha-Gaso, M.-I., March-Iborra, C., Montoya-Baides, Á., & Arnau-Vives, A. (2009). Surface Generated Acoustic Wave Biosensors for the Detection of Pathogens: A Review. Sensors, 9(7), 5740-5769. doi:10.3390/s90705740 es_ES
dc.description.references Josse, F., Bender, F., & Cernosek, R. W. (2001). Guided Shear Horizontal Surface Acoustic Wave Sensors for Chemical and Biochemical Detection in Liquids. Analytical Chemistry, 73(24), 5937-5944. doi:10.1021/ac010859e es_ES
dc.description.references McHale, G. (2003). Generalized concept of shear horizontal acoustic plate mode and Love wave sensors. Measurement Science and Technology, 14(11), 1847-1853. doi:10.1088/0957-0233/14/11/001 es_ES
dc.description.references Lindner, G. (2008). Sensors and actuators based on surface acoustic waves propagating along solid–liquid interfaces. Journal of Physics D: Applied Physics, 41(12), 123002. doi:10.1088/0022-3727/41/12/123002 es_ES
dc.description.references Jakoby, B., & Vellekoop, M. J. (1997). Properties of Love waves: applications in sensors. Smart Materials and Structures, 6(6), 668-679. doi:10.1088/0964-1726/6/6/003 es_ES
dc.description.references Bisoffi, M., Hjelle, B., Brown, D. C., Branch, D. W., Edwards, T. L., Brozik, S. M., … Larson, R. S. (2008). Detection of viral bioagents using a shear horizontal surface acoustic wave biosensor. Biosensors and Bioelectronics, 23(9), 1397-1403. doi:10.1016/j.bios.2007.12.016 es_ES
dc.description.references Andrä, J., Böhling, A., Gronewold, T. M. A., Schlecht, U., Perpeet, M., & Gutsmann, T. (2008). Surface Acoustic Wave Biosensor as a Tool to Study the Interaction of Antimicrobial Peptides with Phospholipid and Lipopolysaccharide Model Membranes. Langmuir, 24(16), 9148-9153. doi:10.1021/la801252t es_ES
dc.description.references Moll, N., Pascal, E., Dinh, D. H., Pillot, J.-P., Bennetau, B., Rebière, D., … Déjous, C. (2007). A Love wave immunosensor for whole E. coli bacteria detection using an innovative two-step immobilisation approach. Biosensors and Bioelectronics, 22(9-10), 2145-2150. doi:10.1016/j.bios.2006.09.032 es_ES
dc.description.references Branch, D. W., & Brozik, S. M. (2004). Low-level detection of a Bacillus anthracis simulant using Love-wave biosensors on 36°YX LiTaO3. Biosensors and Bioelectronics, 19(8), 849-859. doi:10.1016/j.bios.2003.08.020 es_ES
dc.description.references Tamarin, O., Comeau, S., Déjous, C., Moynet, D., Rebière, D., Bezian, J., & Pistré, J. (2003). Real time device for biosensing: design of a bacteriophage model using love acoustic waves. Biosensors and Bioelectronics, 18(5-6), 755-763. doi:10.1016/s0956-5663(03)00022-8 es_ES
dc.description.references Howe, E., & Harding, G. (2000). A comparison of protocols for the optimisation of detection of bacteria using a surface acoustic wave (SAW) biosensor. Biosensors and Bioelectronics, 15(11-12), 641-649. doi:10.1016/s0956-5663(00)00116-0 es_ES
dc.description.references Francis, L. A., Friedt, J.-M., & Bertrand, P. (2005). Influence of electromagnetic interferences on the mass sensitivity of Love mode surface acoustic wave sensors. Sensors and Actuators A: Physical, 123-124, 360-369. doi:10.1016/j.sna.2005.03.030 es_ES
dc.description.references Harding, G. L. (2001). Mass sensitivity of Love-mode acoustic sensors incorporating silicon dioxide and silicon-oxy-fluoride guiding layers. Sensors and Actuators A: Physical, 88(1), 20-28. doi:10.1016/s0924-4247(00)00491-x es_ES
dc.description.references Wang, Z., Cheeke, J. D. N., & Jen, C. K. (1994). Sensitivity analysis for Love mode acoustic gravimetric sensors. Applied Physics Letters, 64(22), 2940-2942. doi:10.1063/1.111976 es_ES
dc.description.references Kalantar-Zadeh, K., Wlodarski, W., Chen, Y. Y., Fry, B. N., & Galatsis, K. (2003). Novel Love mode surface acoustic wave based immunosensors. Sensors and Actuators B: Chemical, 91(1-3), 143-147. doi:10.1016/s0925-4005(03)00079-0 es_ES
dc.description.references Arnau, A., Montagut, Y., García, J. V., & Jiménez, Y. (2009). A different point of view on the sensitivity of quartz crystal microbalance sensors. Measurement Science and Technology, 20(12), 124004. doi:10.1088/0957-0233/20/12/124004 es_ES
dc.description.references March, C., Manclús, J. J., Jiménez, Y., Arnau, A., & Montoya, A. (2009). A piezoelectric immunosensor for the determination of pesticide residues and metabolites in fruit juices. Talanta, 78(3), 827-833. doi:10.1016/j.talanta.2008.12.058 es_ES
dc.description.references Arnau, A. (2008). A Review of Interface Electronic Systems for AT-cut Quartz Crystal Microbalance Applications in Liquids. Sensors, 8(1), 370-411. doi:10.3390/s8010370 es_ES
dc.description.references Eichelbaum, F., Borngräber, R., Schröder, J., Lucklum, R., & Hauptmann, P. (1999). Interface circuits for quartz-crystal-microbalance sensors. Review of Scientific Instruments, 70(5), 2537-2545. doi:10.1063/1.1149788 es_ES
dc.description.references Schröder, J., Borngräber, R., Lucklum, R., & Hauptmann, P. (2001). Network analysis based interface electronics for quartz crystal microbalance. Review of Scientific Instruments, 72(6), 2750-2755. doi:10.1063/1.1370560 es_ES
dc.description.references Rodahl, M., & Kasemo, B. (1996). A simple setup to simultaneously measure the resonant frequency and the absolute dissipation factor of a quartz crystal microbalance. Review of Scientific Instruments, 67(9), 3238-3241. doi:10.1063/1.1147494 es_ES
dc.description.references Rodahl, M., & Kasemo, B. (1996). Frequency and dissipation-factor responses to localized liquid deposits on a QCM electrode. Sensors and Actuators B: Chemical, 37(1-2), 111-116. doi:10.1016/s0925-4005(97)80077-9 es_ES
dc.description.references Barnes, C. (1992). Some new concepts on factors influencing the operational frequency of liquid-immersed quartz microbalances. Sensors and Actuators A: Physical, 30(3), 197-202. doi:10.1016/0924-4247(92)80120-r es_ES
dc.description.references Borngraber, R., Schroder, J., Lucklum, R., & Hauptmann, P. (2002). Is an oscillator-based measurement adequate in a liquid environment? IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 49(9), 1254-1259. doi:10.1109/tuffc.2002.1041542 es_ES
dc.description.references Ehahoun, H., Gabrielli, C., Keddam, M., Perrot, H., & Rousseau, P. (2002). Performances and Limits of a Parallel Oscillator for Electrochemical Quartz Crystal Microbalances. Analytical Chemistry, 74(5), 1119-1127. doi:10.1021/ac010883s es_ES
dc.description.references Martin, S. J., Spates, J. J., Wessendorf, K. O., Schneider, T. W., & Huber, R. J. (1997). Resonator/Oscillator Response to Liquid Loading. Analytical Chemistry, 69(11), 2050-2054. doi:10.1021/ac961194x es_ES
dc.description.references Ferrari, V., Marioli, D., & Taroni, A. (2001). Improving the accuracy and operating range of quartz microbalance sensors by a purposely designed oscillator circuit. IEEE Transactions on Instrumentation and Measurement, 50(5), 1119-1122. doi:10.1109/19.963169 es_ES
dc.description.references Arnau, A., Sogorb, T., & Jiménez, Y. (2002). Circuit for continuous motional series resonant frequency and motional resistance monitoring of quartz crystal resonators by parallel capacitance compensation. Review of Scientific Instruments, 73(7), 2724-2737. doi:10.1063/1.1484254 es_ES
dc.description.references Jakoby, B., Art, G., & Bastemeijer, J. (2005). Novel analog readout electronics for microacoustic thickness shear-mode sensors. IEEE Sensors Journal, 5(5), 1106-1111. doi:10.1109/jsen.2005.844330 es_ES
dc.description.references Ferrari, M., Ferrari, V., Marioli, D., Taroni, A., Suman, M., & Dalcanale, E. (2006). In-Liquid Sensing of Chemical Compounds by QCM Sensors Coupled With High-Accuracy ACC Oscillator. IEEE Transactions on Instrumentation and Measurement, 55(3), 828-834. doi:10.1109/tim.2006.873792 es_ES
dc.description.references Ferrari, M., Ferrari, V., & Kanazawa, K. K. (2008). Dual-harmonic oscillator for quartz crystal resonator sensors. Sensors and Actuators A: Physical, 145-146, 131-138. doi:10.1016/j.sna.2007.10.087 es_ES
dc.description.references Riesch, C., & Jakoby, B. (2007). Novel Readout Electronics for Thickness Shear-Mode Liquid Sensors Compensating for Spurious Conductivity and Capacitances. IEEE Sensors Journal, 7(3), 464-469. doi:10.1109/jsen.2007.891931 es_ES
dc.description.references Arnau, A., García, J. V., Jimenez, Y., Ferrari, V., & Ferrari, M. (2008). Improved electronic interfaces forAT-cut quartz crystal microbalance sensors under variable damping and parallel capacitance conditions. Review of Scientific Instruments, 79(7), 075110. doi:10.1063/1.2960571 es_ES
dc.description.references Torres, R., Jimenez, Y., Arnau, A., Gabrielli, C., Joiret, S., Perrot, H., … Wang, X. (2010). High frequency mass transfer responses with polyaniline modified electrodes by using new ac-electrogravimetry device. Electrochimica Acta, 55(21), 6308-6312. doi:10.1016/j.electacta.2010.02.009 es_ES
dc.description.references Barnes, C. (1991). Development of quartz crystal oscillators for under-liquid sensing. Sensors and Actuators A: Physical, 29(1), 59-69. doi:10.1016/0924-4247(91)80032-k es_ES
dc.description.references Auge, J., Hauptmann, P., Eichelbaum, F., & Rösler, S. (1994). Quartz crystal microbalance sensor in liquids. Sensors and Actuators B: Chemical, 19(1-3), 518-522. doi:10.1016/0925-4005(93)00983-6 es_ES
dc.description.references Auge, J., Hauptmann, P., Hartmann, J., Rösler, S., & Lucklum, R. (1995). New design for QCM sensors in liquids. Sensors and Actuators B: Chemical, 24(1-3), 43-48. doi:10.1016/0925-4005(95)85010-4 es_ES
dc.description.references Chagnard, C., Gilbert, P., Watkins, A. N., Beeler, T., & Paul, D. W. (1996). An electronic oscillator with automatic gain control: EQCM applications. Sensors and Actuators B: Chemical, 32(2), 129-136. doi:10.1016/0925-4005(96)80121-3 es_ES
dc.description.references Rodriguez-Pardo, L., Fariña, J., Gabrielli, C., Perrot, H., & Brendel, R. (2004). Resolution in quartz crystal oscillator circuits for high sensitivity microbalance sensors in damping media. Sensors and Actuators B: Chemical, 103(1-2), 318-324. doi:10.1016/j.snb.2004.04.060 es_ES
dc.description.references Rodriguez-Pardo, L., Fariña, J., Gabrielli, C., Perrot, H., & Brendel, R. (2006). Quartz crystal oscillator circuit for high resolution microgravimetric sensors in fluids. Electronics Letters, 42(18), 1065. doi:10.1049/el:20061854 es_ES
dc.description.references Uttenthaler, E., Schräml, M., Mandel, J., & Drost, S. (2001). Ultrasensitive quartz crystal microbalance sensors for detection of M13-Phages in liquids. Biosensors and Bioelectronics, 16(9-12), 735-743. doi:10.1016/s0956-5663(01)00220-2 es_ES
dc.description.references Zimmermann, B., Lucklum, R., Hauptmann, P., Rabe, J., & Büttgenbach, S. (2001). Electrical characterisation of high-frequency thickness-shear-mode resonators by impedance analysis. Sensors and Actuators B: Chemical, 76(1-3), 47-57. doi:10.1016/s0925-4005(01)00567-6 es_ES
dc.description.references Sagmeister, B. P., Graz, I. M., Schwödiauer, R., Gruber, H., & Bauer, S. (2009). User-friendly, miniature biosensor flow cell for fragile high fundamental frequency quartz crystal resonators. Biosensors and Bioelectronics, 24(8), 2643-2648. doi:10.1016/j.bios.2009.01.023 es_ES
dc.description.references Pax, M., Rieger, J., Eibl, R. H., Thielemann, C., & Johannsmann, D. (2005). Measurements of fast fluctuations of viscoelastic properties with the quartz crystal microbalance. The Analyst, 130(11), 1474. doi:10.1039/b504302f es_ES
dc.description.references Abad, A., Primo, J., & Montoya, A. (1997). Development of an Enzyme-Linked Immunosorbent Assay to Carbaryl. 1. Antibody Production from Several Haptens and Characterization in Different Immunoassay Formats. Journal of Agricultural and Food Chemistry, 45(4), 1486-1494. doi:10.1021/jf9506904 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem