- -

Squeezing and expanding light without reflections via transformation optics

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Squeezing and expanding light without reflections via transformation optics

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author García Meca, Carlos es_ES
dc.contributor.author Tung, Michael Ming-Sha es_ES
dc.contributor.author Galán Conejos, José Vicente es_ES
dc.contributor.author Ortuño Molinero, Rubén es_ES
dc.contributor.author Rodríguez Fortuño, Francisco José es_ES
dc.contributor.author Martí Sendra, Javier es_ES
dc.contributor.author Martínez Abietar, Alejandro José es_ES
dc.date.accessioned 2013-07-10T09:17:06Z
dc.date.available 2013-07-10T09:17:06Z
dc.date.issued 2011
dc.identifier.issn 1094-4087
dc.identifier.uri http://hdl.handle.net/10251/30974
dc.description This paper was published in OPTICS EXPRESS and is made available as an electronic reprint with the permission of OSA. The paper can be found at the following URL on the OSA website: http://dx.doi.org/10.1364/OE.19.003562. Systematic or multiple reproduction or distribution to multiple locations via electronic or other means is prohibited and is subject to penalties under law es_ES
dc.description.abstract [EN] We study the reflection properties of squeezing devices based on transformation optics. An analytical expression for the angle-dependent reflection coefficient of a generic three-dimensional squeezer is derived. In contrast with previous studies, we find that there exist several conditions that guarantee no reflections so it is possible to build transformation-optics-based reflectionless squeezers. Moreover, it is shown that the design of antireflective coatings for the non-reflectionless case can be reduced to matching the impedance between two dielectrics. We illustrate the potential of these devices by proposing two applications in which a reflectionless squeezer is the key element: an ultra-short perfect coupler for high-index nanophotonic waveguides and a completely flat reflectionless hyperlens. We also apply our theory to the coupling of two metallic waveguides with different cross-section. Finally, we show how the studied devices can be implemented with non-magnetic isotropic materials by using a quasi-conformal mapping technique. © 2011 Optical Society of America. es_ES
dc.description.sponsorship Financial support by the Spanish MICINN under contract CONSOLIDER EMET (CSD2008-00066) and PROMETEO-2010-087 R&D Excellency Program (NANOMET) is gratefully acknowledged. C. G.-M., R. O. and F.J. R.-F. acknowledge financial support from grants FPU of MICINN, FPI of U.P.V. and FPI of Generalitat Valenciana, respectively.
dc.language Inglés es_ES
dc.relation.ispartof Optics Express es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Analytical expressions es_ES
dc.subject Angle-dependent es_ES
dc.subject Anti reflective coatings es_ES
dc.subject Conformal mapping technique es_ES
dc.subject High-index es_ES
dc.subject Isotropic materials es_ES
dc.subject Key elements es_ES
dc.subject Metallic waveguide es_ES
dc.subject Nanophotonic waveguides es_ES
dc.subject Nonmagnetics es_ES
dc.subject Reflection coefficients es_ES
dc.subject Reflection properties es_ES
dc.subject Transformation optics es_ES
dc.subject Conformal mapping es_ES
dc.subject Nanophotonics es_ES
dc.subject Waveguides es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.subject.classification TEORIA DE LA SEÑAL Y COMUNICACIONES es_ES
dc.title Squeezing and expanding light without reflections via transformation optics es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1364/OE.19.003562
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//CSD2008-00066/ES/Ingeniería de Metamateriales/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEO%2F2010%2F087/ES/DESARROLLO DE NUEVOS DISPOSITIVOS NANOFOTONICOS BASADOS EN GUIAS DE SILICIO Y METAMATERIALES/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.description.bibliographicCitation García Meca, C.; Tung, MM.; Galán Conejos, JV.; Ortuño Molinero, R.; Rodríguez Fortuño, FJ.; Martí Sendra, J.; Martínez Abietar, AJ. (2011). Squeezing and expanding light without reflections via transformation optics. Optics Express. 19(4):3562-3575. https://doi.org/10.1364/OE.19.003562 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1364/OE.19.003562 es_ES
dc.description.upvformatpinicio 3562 es_ES
dc.description.upvformatpfin 3575 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 19 es_ES
dc.description.issue 4 es_ES
dc.relation.senia 209151
dc.identifier.pmid 21369180
dc.contributor.funder Ministerio de Ciencia e Innovación
dc.contributor.funder Generalitat Valenciana
dc.description.references Yang, R., Abushagur, M. A., & Lu, Z. (2008). Efficiently squeezing near infrared light into a 21nm-by-24nm nanospot. Optics Express, 16(24), 20142. doi:10.1364/oe.16.020142 es_ES
dc.description.references Vivien, L., Laval, S., Cassan, E., Le Roux, X., & Pascal, D. (2003). 2-d taper for low-loss coupling between polarization-insensitive microwaveguides and single-mode optical fibers. Journal of Lightwave Technology, 21(10), 2429-2433. doi:10.1109/jlt.2003.817692 es_ES
dc.description.references Pendry, J. B. (2006). Controlling Electromagnetic Fields. Science, 312(5781), 1780-1782. doi:10.1126/science.1125907 es_ES
dc.description.references Leonhardt, U., & Philbin, T. G. (2006). General relativity in electrical engineering. New Journal of Physics, 8(10), 247-247. doi:10.1088/1367-2630/8/10/247 es_ES
dc.description.references Rahm, M., Cummer, S. A., Schurig, D., Pendry, J. B., & Smith, D. R. (2008). Optical Design of Reflectionless Complex Media by Finite Embedded Coordinate Transformations. Physical Review Letters, 100(6). doi:10.1103/physrevlett.100.063903 es_ES
dc.description.references Rahm, M., Roberts, D. A., Pendry, J. B., & Smith, D. R. (2008). Transformation-optical design of adaptive beam bends and beam expanders. Optics Express, 16(15), 11555. doi:10.1364/oe.16.011555 es_ES
dc.description.references Grzegorczyk, T. M., Chen, X., Pacheco, J., Chen, J., Wu, B.-I., & Kong, J. A. (2005). REFLECTION COEFFICIENTS AND GOOS-HANCHEN SHIFTS IN ANISOTROPIC AND BIANISOTROPIC LEFT-HANDED METAMATERIALS. Progress In Electromagnetics Research, 51, 83-113. doi:10.2528/pier04040901 es_ES
dc.description.references Taillaert, D., Bogaerts, W., Bienstman, P., Krauss, T. F., Van Daele, P., Moerman, I., … Baets, R. (2002). An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers. IEEE Journal of Quantum Electronics, 38(7), 949-955. doi:10.1109/jqe.2002.1017613 es_ES
dc.description.references Roelkens, G., Vermeulen, D., Van Thourhout, D., Baets, R., Brision, S., Lyan, P., … Fédéli, J.-M. (2008). High efficiency diffractive grating couplers for interfacing a single mode optical fiber with a nanophotonic silicon-on-insulator waveguide circuit. Applied Physics Letters, 92(13), 131101. doi:10.1063/1.2905260 es_ES
dc.description.references Tsuchizawa, T., Yamada, K., Fukuda, H., Watanabe, T., Jun-ichi Takahashi, Takahashi, M., … Morita, H. (2005). Microphotonics devices based on silicon microfabrication technology. IEEE Journal of Selected Topics in Quantum Electronics, 11(1), 232-240. doi:10.1109/jstqe.2004.841479 es_ES
dc.description.references Li, J., & Pendry, J. B. (2008). Hiding under the Carpet: A New Strategy for Cloaking. Physical Review Letters, 101(20). doi:10.1103/physrevlett.101.203901 es_ES
dc.description.references Vasić, B., Isić, G., Gajić, R., & Hingerl, K. (2009). Coordinate transformation based design of confined metamaterial structures. Physical Review B, 79(8). doi:10.1103/physrevb.79.085103 es_ES
dc.description.references Shalaev, V. M. (2008). PHYSICS: Transforming Light. Science, 322(5900), 384-386. doi:10.1126/science.1166079 es_ES
dc.description.references Xiong, Y., Liu, Z., & Zhang, X. (2009). A simple design of flat hyperlens for lithography and imaging with half-pitch resolution down to 20 nm. Applied Physics Letters, 94(20), 203108. doi:10.1063/1.3141457 es_ES
dc.description.references Kildishev, A. V., & Narimanov, E. E. (2007). Impedance-matched hyperlens. Optics Letters, 32(23), 3432. doi:10.1364/ol.32.003432 es_ES
dc.description.references Gaillot, D. P., Croënne, C., Zhang, F., & Lippens, D. (2008). Transformation optics for the full dielectric electromagnetic cloak and metal–dielectric planar hyperlens. New Journal of Physics, 10(11), 115039. doi:10.1088/1367-2630/10/11/115039 es_ES
dc.description.references Tichit, P.-H., Burokur, S. N., & de Lustrac, A. (2010). Waveguide taper engineering using coordinate transformation technology. Optics Express, 18(2), 767. doi:10.1364/oe.18.000767 es_ES
dc.description.references Zang, X., & Jiang, C. (2010). Manipulating the field distribution via optical transformation. Optics Express, 18(10), 10168. doi:10.1364/oe.18.010168 es_ES
dc.description.references Chang, Z., Zhou, X., Hu, J., & Hu, G. (2010). Design method for quasi-isotropic transformation materials based on inverse Laplace’s equation with sliding boundaries. Optics Express, 18(6), 6089. doi:10.1364/oe.18.006089 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem