- -

Synthetic Auxin 3,5,6-TPA Provokes Citrus clementina (Hort. ex Tan) Fruitlet Abscission by Reducing Photosynthate Availability

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Synthetic Auxin 3,5,6-TPA Provokes Citrus clementina (Hort. ex Tan) Fruitlet Abscission by Reducing Photosynthate Availability

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Mesejo Conejos, Carlos es_ES
dc.contributor.author Rosito, Salvatore es_ES
dc.contributor.author Reig Valor, Carmina es_ES
dc.contributor.author Martínez Fuentes, Amparo es_ES
dc.contributor.author Agustí Fonfría, Manuel
dc.date.accessioned 2013-10-31T07:52:59Z
dc.date.issued 2012
dc.identifier.issn 0721-7595
dc.identifier.uri http://hdl.handle.net/10251/33150
dc.description.abstract The aim of this study was to determine the effects of the synthetic auxin 3,5,6-trichloro-2-pirydiloxyacetic acid (3,5,6-TPA) on photosynthetic activity, photosynthate transport to the fruit, and fruitlet abscission to further explain the physiological basis of auxin-mediated citrus fruit thinning. Applying 15 mg l(-1) 3,5,6-TPA to trees during the fruit cell division stage significantly increased fruitlet abscission of Clementine mandarin. On treated trees, abnormal foliar development and photosynthetic damage were observed at the same time as 3,5,6-TPA reduced fruitlet growth rate. Briefly, treatment reduced chlorophyll and carotenoid concentrations and modified chlorophyll a fluorescence parameters, that is, reduced the quantum yield (Dcurrency signPSII) of the noncyclic electron transport rate, diminished the capacity to reduce the quinone pool (photochemical quenching; q(p)), and increased nonphotochemical quenching (q (N)), thereby preventing the dissipation of excess excitation energy. In addition, the net photosynthetic flux (mu mol CO2 m(-2) s(-1)) and leaf photosynthate content decreased in treated trees. As a result, the 3,5,6-TPA treatment significantly reduced the photosynthate accumulation in fruit from day 3 to day 8 after treatment, thus reducing fruitlet growth rate. Hence, treated fruitlets significantly increased ethylene production and abscised. Twenty days after treatment, chlorophyll a fluorescence parameters and fruitlet growth rate were reestablished. Accordingly, the thinning effect of 3,5,6-TPA may be due to a temporarily induced photosynthetic disorder that leads to reduction in photosynthate production and fruitlet uptake that temporarily slows its growth, triggering ethylene production and fruitlet abscission. Afterward, the remaining treated fruit overcame this effect, increased growth rate, and reached a larger size than control fruit. es_ES
dc.language Inglés es_ES
dc.publisher Springer Verlag es_ES
dc.relation.ispartof Journal of Plant Growth Regulation es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Auxins es_ES
dc.subject Carbohydrates es_ES
dc.subject Citrus es_ES
dc.subject Photosynthesis es_ES
dc.subject Thinning es_ES
dc.subject.classification PRODUCCION VEGETAL es_ES
dc.title Synthetic Auxin 3,5,6-TPA Provokes Citrus clementina (Hort. ex Tan) Fruitlet Abscission by Reducing Photosynthate Availability es_ES
dc.type Artículo es_ES
dc.embargo.lift 10000-01-01
dc.embargo.terms forever es_ES
dc.identifier.doi 10.1007/s00344-011-9230-z
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Producción Vegetal - Departament de Producció Vegetal es_ES
dc.description.bibliographicCitation Mesejo Conejos, C.; Rosito, S.; Reig Valor, C.; Martinez Fuentes, A.; Agustí Fonfría, M. (2012). Synthetic Auxin 3,5,6-TPA Provokes Citrus clementina (Hort. ex Tan) Fruitlet Abscission by Reducing Photosynthate Availability. Journal of Plant Growth Regulation. 31(2):186-194. doi:10.1007/s00344-011-9230-z es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1007/s00344-011-9230-z es_ES
dc.description.upvformatpinicio 186 es_ES
dc.description.upvformatpfin 194 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 31 es_ES
dc.description.issue 2 es_ES
dc.relation.senia 237527
dc.description.references Agustí M, El-Otmani M, Aznar M, Juan M, Almela V (1995) Effect of 3,5,6-trichloro-2-pirydiloxyacetic acid on clementine early fruitlet development and on fruit size at maturity. J Hortic Sci 70:955–962 es_ES
dc.description.references Agustí M, Zaragoza S, Iglesias DJ, Almela V, Primo-Millo E, Talón M (2002) The synthetic auxin 3,5,6-TPA stimulates carbohydrate accumulation and growth in citrus fruit. Plant Growth Regul 36:141–147 es_ES
dc.description.references Agustí M, Juan M, Almela V (2007) Response of ‘Clausellina’ Satsuma mandarin to 3,5,6-trichloro-2-pirydiloxyacetic acid and fruitlet abscission. Plant Growth Regul 53:129–135 es_ES
dc.description.references Aloni R (2010) The induction of vascular tissues by auxin. In: Davies PJ (ed) Plant hormones. Biosynthesis, signal transduction, action!. Springer, Amsterdam, pp 485–506 es_ES
dc.description.references Aznar M, Almela V, Juan M, El-Otmani M, Agustí M (1995) Effect of the synthetic auxin phenothiol on fruit development of ‘Fortune’ mandarin. J Hort Sci 70:617–621 es_ES
dc.description.references Bangerth F (2000) Abscission and thinning of young fruit and their regulation by plant hormones and bioregulators. Plant Growth Regul 31:43–59 es_ES
dc.description.references Bilger W, Björkman O (1991) Temperature dependence of violaxanthin de-epoxidation and non-photochemical fluorescence quenching in intact leaves of Gossypium hirsutum L. and Malva parviflora L. Planta 184:226–234 es_ES
dc.description.references Calatayud A, Iglesias DJ, Talón M, Barreno E (2004) Response of spinach leaves (Spinacia oleracea L.) to ozone measured by gas exchange, chlorophyll a fluorescence, antioxidant systems, and lipid peroxidation. Photosynthetica 42:23–29 es_ES
dc.description.references Calatayud A, Iglesias DJ, Talón M, Barreno E (2006) Effects of long-term ozone exposure on citrus: chlorophyll a fluorescence and gas exchange. Photosynthetica 44:548–554 es_ES
dc.description.references Davies BH (1976) Carotenoids. In: Goodwin TW (ed) Chemistry and biochemistry of plant pigments. Academic Press, New York, pp 38–165 es_ES
dc.description.references Demming-Adams B, Adams WW III (1996) The role of xanthophyll cycle carotenoids in the protection of photosynthesis. Trends Plant Sci 1:21–26 es_ES
dc.description.references El-Otmani M, Coggins CW Jr, Agustí M, Lovatt CJ (2000) Plant growth regulators in Citriculture: World current uses. Crit Rev Plant Sci 19:395–447 es_ES
dc.description.references Genty B, Briantais JM, Baker NR (1989) The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim Biophys Acta 990:87–92 es_ES
dc.description.references Goldschmidt EE, Monselise SP (1977) Physiological assumptions toward the development of a Citrus fruiting model. Proc Int Soc Citriculture 2:668–672 es_ES
dc.description.references Gómez-Cadenas A, Mehouachi J, Tadeo FR, Primo-Millo E, Talon M (2000) Hormonal regulation of fruitlet abscission induced by carbohydrate shortage in citrus. Planta 210:636–643 es_ES
dc.description.references Iglesias D, Lliso I, Tadeo FR, Talón M (2002) Regulation of photosynthesis through source: sink imbalance in citrus is mediated by carbohydrate content in leaves. Physiol Plant 116:563–572 es_ES
dc.description.references Iglesias DJ, Tadeo FR, Primo-Millo E, Talon M (2006) Carbohydrate and ethylene levels regulate citrus fruitlet drop through the abscission zone A during early development. Trees 20:348–355 es_ES
dc.description.references Iwahori S, Oohata JT (1976) Chemical thinning of ‘Satsuma’ mandarin (Citrus unshiu Marc.) fruit by 1 naphthalene acetic acid: role of ethylene and cellulase. Sci Hortic Amsterdam 4:167–174 es_ES
dc.description.references Martínez-Fuentes A, Mesejo C, Reig C, Agustí M (2010) Timing of the inhibitory effect of fruit on return bloom of ‘Valencia’ sweet orange (Citrus sinensis (L.) Osbeck). J Sci Food Agric 90:1936–1943 es_ES
dc.description.references Mauk CS, Bausher MG, Yelenosky G (1986) Influence of growth regulator treatments on dry matter production, fruit abscission, and 14C-assimilate partitioning in Citrus. J Plant Growth Regul 5:111–120 es_ES
dc.description.references Meir S, Hunter DA, Chen JC, Halaly V, Reid MS (2006) Molecular changes occurring during acquisition of abscission competence following auxin depletion in Mirabilis jalapa. Plant Physiol 141:1604–1616 es_ES
dc.description.references Mesejo C, Martínez-Fuentes A, Juan M, Almela V, Agustí M (2003) Vascular tissues development of citrus fruit peduncle is promoted by synthetic auxins. Plant Growth Regul 39:131–135 es_ES
dc.description.references Okuda H, Hirabayashi T (1998) Effect of IAA gradient between the peduncle and branch on physiological drop of citrus fruit (Kiyomi tangor). J Hortic Sci Biotechnol 73:618–621 es_ES
dc.description.references Paterson SE (2001) Cutting loose. Abscission and dehiscence in Arabidopsis. Plant Physiol 126:494–500 es_ES
dc.description.references Rivas F, Erner Y, Alós E, Juan M, Almela V, Agustí M (2006) Girdling increases carbohydrate availability and fruit-set in citrus cultivars irrespective of parthenocarpic ability. J Hortic Sci Biotechnol 81:289–295 es_ES
dc.description.references Rivas F, Gravina A, Agustí M (2007) Girdling effects on fruit set and quantum yield efficiency of PSII in two Citrus cultivars. Tree Physiol 27:527–535 es_ES
dc.description.references Rodrigo MJ, Marcos JF, Alférez F, Mallent MD, Zacarías L (2003) Characterization of Pinalate, a novel Citrus sinensis mutant with a fruit-specific alteration that results in yellow pigmentation and decreased ABA content. J Exp Bot 54:727–738 es_ES
dc.description.references Romero-Puertas MC, McCarthy I, Gómez M, Sandalio LM, Corpas FJ, Del Río LA, Palma JM (2004) Reactive oxygen species-mediated enzymatic systems involved in the oxidative action of 2,4-dichlorophenoxyacetic acid. Plant Cell Environ 27:1135–1148 es_ES
dc.description.references Schreiber U, Schliwa U, Bilger W (1986) Continuous recording of photochemical and non-photochemical fluorescence quenching with a new type of modulation fluorometer. Photosynth Res 10:51–62 es_ES
dc.description.references Untiedt R, Blanke M (2001) Effects of fruit thinning agents on apple tree canopy photosynthesis and dark respiration. Plant Growth Regul 35:1–9 es_ES
dc.description.references Van Doorn WG, Stead AD (1997) Abscission of flowers and floral parts. J Exp Bot 48:821–837 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem