- -

Probing lipid peroxidatin by using linoleic acid and benzophenone

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Probing lipid peroxidatin by using linoleic acid and benzophenone

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Andreu Ros, María Inmaculada es_ES
dc.contributor.author Neshchadin, Dmytro es_ES
dc.contributor.author Rico Inglada, Enrique es_ES
dc.contributor.author Griesser, Markus es_ES
dc.contributor.author Samadi, Abdelouahid es_ES
dc.contributor.author Morera Bertomeu, Isabel María es_ES
dc.contributor.author Gescheidt, Georg es_ES
dc.contributor.author Miranda Alonso, Miguel Ángel
dc.date.accessioned 2013-11-11T13:45:01Z
dc.date.issued 2011-07-26
dc.identifier.issn 0947-6539
dc.identifier.uri http://hdl.handle.net/10251/33427
dc.description.abstract A thorough mechanistic study has been performed on the reaction between benzophenone (BZP) and a series of 1,4-dienes, including 1,4-cyclohexadiene (CHD), 1,4-dihydro-2-methylbenzoic acid (MBA), 1,4-dihydro-1,2-dimethylbenzoic acid (DMBA) and linoleic acid (LA). A combination of steady-state photolysis, laser flash photolysis (LFP), and photochemically induced dynamic nuclear polarization (photo-CIDNP) have been used. Irradiation of BZP and CHD led to a cross-coupled sensitizer¿diene product, together with 6, 7, and 8. With MBA and DMBA as hydrogen donors, photoproducts arising from cross-coupling of sensitizer and diene radicals were found; compound 7 was also obtained, but 6 and o-toluic acid were only isolated in the irradiation of BZP with MBA. Triplet lifetimes were determined in the absence and in the presence of several diene concentrations. All three model compounds showed similar reactivity (kq¿108¿m¿1¿s¿1) towards triplet excited BZP. Partly reversible hydrogen abstraction of the allylic hydrogen atoms of CHD, MBA, and DMBA was also detected by photo-CIDNP on different timescales. Polarizations of the diamagnetic products were in full agreement with the results derived from LFP. Finally, LA also underwent partly reversible hydrogen abstraction during photoreaction with BZP. Subsequent hydrogen transfer between primary radicals led to conjugated derivatives of LA. The unpaired electron spin population in linoleyl radical (LA.) was predominantly found on H(1-5) protons. To date, LA-related radicals were only reported upon hydrogen transfer from highly substituted model compounds by steady-state EPR spectroscopy. Herein, we have experimentally established the formation of LA. and shown that it converts into two dominating conjugated isomers on the millisecond timescale. Such processes are at the basis of alterations of membrane structures caused by oxidative stress. es_ES
dc.description.sponsorship Financial support from the MICINN (grants CTQ2009-13699 and CTQ2010-14882), from the Generalitat Valenciana (GV/2009/104) and from Carlos III Institute of Health (grant RIRAAF, RETICS program) is gratefully acknowledged. We thank also COST project CM603 for facilitating our collaboration. en_EN
dc.format.extent 8 es_ES
dc.language Inglés es_ES
dc.publisher Wiley-VCH Verlag es_ES
dc.relation.ispartof Chemistry - A European Journal es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Dienes es_ES
dc.subject Hydrogen abstraction es_ES
dc.subject Photochemistry es_ES
dc.subject Photolysis es_ES
dc.subject Transient absorption spectroscopy es_ES
dc.subject.classification QUIMICA ORGANICA es_ES
dc.title Probing lipid peroxidatin by using linoleic acid and benzophenone es_ES
dc.type Artículo es_ES
dc.embargo.lift 10000-01-01
dc.embargo.terms forever es_ES
dc.identifier.doi 10.1002/chem.201100983
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//CTQ2010-14882/ES/DIADAS FOTOACTIVAS COMO SONDAS PARA LA GENERACION DE ESPECIES TRANSITORIAS EN SISTEMAS MICROHETEROGENEOS DE TIPO BIOMIMETICO/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/COST//CM0603/EU/Free Radicals in Chemical Biology (CHEMBIORADICAL)/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/Generalitat Valenciana//GV%2F2009%2F104/ES/Estudio de la Fotoperoxidación de Lípidos de Membrana por Fármacos/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//CTQ2009-13699/ES/CTQ2009-13699/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química es_ES
dc.description.bibliographicCitation Andreu Ros, MI.; Neshchadin, D.; Rico Inglada, E.; Griesser, M.; Samadi, A.; Morera Bertomeu, IM.; Gescheidt, G.... (2011). Probing lipid peroxidatin by using linoleic acid and benzophenone. Chemistry - A European Journal. 17(36):10089-10096. https://doi.org/10.1002/chem.201100983 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://onlinelibrary.wiley.com/doi/10.1002/chem.201100983/full es_ES
dc.description.upvformatpinicio 10089 es_ES
dc.description.upvformatpfin 10096 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 17 es_ES
dc.description.issue 36 es_ES
dc.relation.senia 197850
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder European Cooperation in Science and Technology es_ES
dc.contributor.funder Instituto de Salud Carlos III es_ES
dc.description.references Girotti, A. W. (1990). PHOTODYNAMIC LIPID PEROXIDATION IN BIOLOGICAL SYSTEMS. Photochemistry and Photobiology, 51(4), 497-509. doi:10.1111/j.1751-1097.1990.tb01744.x es_ES
dc.description.references Sevanian, A., & Ursini, F. (2000). Lipid peroxidation in membranes and low-density lipoproteins: similarities and differences. Free Radical Biology and Medicine, 29(3-4), 306-311. doi:10.1016/s0891-5849(00)00342-7 es_ES
dc.description.references Montine, T. J., Neely, M. D., Quinn, J. F., Beal, M. F., Markesbery, W. R., Roberts, L. J., & Morrow, J. D. (2002). Lipid peroxidation in aging brain and Alzheimer’s disease1,2 1Guest Editors: Mark A. Smith and George Perry 2This article is part of a series of reviews on «Causes and Consequences of Oxidative Stress in Alzheimer’s Disease.» The full list of papers may be found on the homepage of the journal. Free Radical Biology and Medicine, 33(5), 620-626. doi:10.1016/s0891-5849(02)00807-9 es_ES
dc.description.references Shahidi, F., & Zhong, Y. (2010). Lipid oxidation and improving the oxidative stability. Chemical Society Reviews, 39(11), 4067. doi:10.1039/b922183m es_ES
dc.description.references Porter, N. A. (1984). [32] Chemistry of lipid peroxidation. Oxygen Radicals in Biological Systems, 273-282. doi:10.1016/s0076-6879(84)05035-7 es_ES
dc.description.references Porter, N. A. (1986). Mechanisms for the autoxidation of polyunsaturated lipids. Accounts of Chemical Research, 19(9), 262-268. doi:10.1021/ar00129a001 es_ES
dc.description.references Boscá, F., & Miranda, M. A. (1998). New Trends in Photobiology (Invited Review) Photosensitizing drugs containing the benzophenone chromophore. Journal of Photochemistry and Photobiology B: Biology, 43(1), 1-26. doi:10.1016/s1011-1344(98)00062-1 es_ES
dc.description.references Velosa, A. C., Baader, W. J., Stevani, C. V., Mano, C. M., & Bechara, E. J. H. (2007). 1,3-Diene Probes for Detection of Triplet Carbonyls in Biological Systems. Chemical Research in Toxicology, 20(8), 1162-1169. doi:10.1021/tx700074n es_ES
dc.description.references Encinas, M. V., & Scaiano, J. C. (1981). Reaction of benzophenone triplets with allylic hydrogens. Laser flash photolysis study. Journal of the American Chemical Society, 103(21), 6393-6397. doi:10.1021/ja00411a021 es_ES
dc.description.references Nau, W. M., Cozens, F. L., & Scaiano, J. C. (1996). Reactivity and Efficiency of Singlet- and Triplet-Excited States in Intermolecular Hydrogen Abstraction Reactions. Journal of the American Chemical Society, 118(9), 2275-2282. doi:10.1021/ja9535118 es_ES
dc.description.references Adam, W., Moorthy, J. N., Nau, W. M., & Scaiano, J. C. (1997). Photoreduction of Azoalkanes by Direct Hydrogen Abstraction from 1,4-Cyclohexadiene, Alcohols, Stannanes, and Silanes. The Journal of Organic Chemistry, 62(23), 8082-8090. doi:10.1021/jo971105w es_ES
dc.description.references Boscá, F., Miranda, M. A., Morera, I. M., & Samadi, A. (2000). Involvement of type I and type II mechanisms in the linoleic acid peroxidation photosensitized by tiaprofenic acid. Journal of Photochemistry and Photobiology B: Biology, 58(1), 1-5. doi:10.1016/s1011-1344(00)00102-0 es_ES
dc.description.references Samadi, A., Martínez, L. A., Miranda, M. A., & Morera, I. M. (2001). Mechanism of Lipid Peroxidation Photosensitized by Tiaprofenic Acid: Product Studies Using Linoleic Acid and 1,4-Cyclohexadienes as Model Substrates¶. Photochemistry and Photobiology, 73(4), 359. doi:10.1562/0031-8655(2001)073<0359:molppb>2.0.co;2 es_ES
dc.description.references Miranda, M. A., Martínez, L. A., Samadi, A., Boscá, F., & Morera, I. M. (2002). Stereoselective intramolecular hydrogen abstraction by a chiral benzophenone derivative. Chemical Communications, (3), 280-281. doi:10.1039/b108858k es_ES
dc.description.references Boscá, F., Andreu, I., Morera, I. M., Samadi, A., & Miranda, M. A. (2003). Chiral discrimination in the intramolecular abstraction of allylic hydrogens by benzophenone triplets. Chem. Commun., (13), 1592-1593. doi:10.1039/b303263a es_ES
dc.description.references Goez, M., & Frisch, I. (2002). Activation Energy of a Biradical Rearrangement Measured by Photo-CIDNP. The Journal of Physical Chemistry A, 106(35), 8079-8084. doi:10.1021/jp020478k es_ES
dc.description.references Goez, M., & Eckert, G. (2006). Photoinduced electron transfer sensitization investigated by chemically induced dynamic nuclear polarizatioin (CIDNP). Physical Chemistry Chemical Physics, 8(45), 5294. doi:10.1039/b609026e es_ES
dc.description.references Roth, H. D. (2008). Biradicals by triplet recombination of radical ion pairs. Photochemical & Photobiological Sciences, 7(5), 540. doi:10.1039/b800524a es_ES
dc.description.references Neshchadin, D., Levinn, R., Gescheidt, G., & Batchelor, S. N. (2010). Probing the Antioxidant Activity of Polyphenols by CIDNP: From Model Compounds to Green Tea and Red Wine. Chemistry - A European Journal, 16(23), 7008-7016. doi:10.1002/chem.200903238 es_ES
dc.description.references CLOSS, G. L. (1974). Chemically Induced Dynamic Nuclear Polarization. Advances in Magnetic and Optical Resonance, 157-229. doi:10.1016/b978-0-12-025507-8.50009-7 es_ES
dc.description.references Goez, M. (1995). An introduction to chemically induced dynamic nuclear polarization. Concepts in Magnetic Resonance, 7(1), 69-86. doi:10.1002/cmr.1820070105 es_ES
dc.description.references Closs, G. L. (1969). Mechanism explaining nuclear spin polarizations in radical combination reactions. Journal of the American Chemical Society, 91(16), 4552-4554. doi:10.1021/ja01044a043 es_ES
dc.description.references Kaptein, R., & Oosterhoff, L. J. (1969). Chemically induced dynamic nuclear polarization III (anomalous multiplets of radical coupling and disproportionation products). Chemical Physics Letters, 4(4), 214-216. doi:10.1016/0009-2614(69)80105-3 es_ES
dc.description.references Salikhov, K. M. (1982). Mutual effect of nuclei upon CIDNP in high fields. Violation of the Kaptein rules. Chemical Physics, 64(3), 371-379. doi:10.1016/0301-0104(82)80005-0 es_ES
dc.description.references Goez, M. (1992). Pseudo steady-state photo-CIDNP measurements. Chemical Physics Letters, 188(5-6), 451-456. doi:10.1016/0009-2614(92)80847-5 es_ES
dc.description.references Kitaguchi, H., Ohkubo, K., Ogo, S., & Fukuzumi, S. (2005). Direct ESR Detection of Pentadienyl Radicals and Peroxyl Radicals in Lipid Peroxidation:  Mechanistic Insight into Regioselective Oxygenation in Lipoxygenases. Journal of the American Chemical Society, 127(18), 6605-6609. doi:10.1021/ja044345j es_ES
dc.description.references Becke, A. D. (1993). Density‐functional thermochemistry. III. The role of exact exchange. The Journal of Chemical Physics, 98(7), 5648-5652. doi:10.1063/1.464913 es_ES
dc.description.references Stephens, P. J., Devlin, F. J., Chabalowski, C. F., & Frisch, M. J. (1994). Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields. The Journal of Physical Chemistry, 98(45), 11623-11627. doi:10.1021/j100096a001 es_ES
dc.description.references Schäfer, A., Huber, C., & Ahlrichs, R. (1994). Fully optimized contracted Gaussian basis sets of triple zeta valence quality for atoms Li to Kr. The Journal of Chemical Physics, 100(8), 5829-5835. doi:10.1063/1.467146 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem