- -

Stereoselective single (copper) or double (platinum) boronation of alkynes catalyzed by magnesia-supported copper oxide or platinum nanoparticles

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Stereoselective single (copper) or double (platinum) boronation of alkynes catalyzed by magnesia-supported copper oxide or platinum nanoparticles

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Grirrane, Abdessamad es_ES
dc.contributor.author Corma Canós, Avelino es_ES
dc.contributor.author García Gómez, Hermenegildo es_ES
dc.date.accessioned 2013-11-20T09:28:41Z
dc.date.issued 2011-02-18
dc.identifier.issn 0947-6539
dc.identifier.uri http://hdl.handle.net/10251/33797
dc.description.abstract Copper(II) oxide nanoparticles supported on magnesia have been prepared from CuII supported on magnesia by hydrogen reduction at 400°C followed by storage under ambient conditions. X-ray photoelectron spectroscopy of the material clearly shows that immediately after the reduction copper(0)-metal nanoparticles are present on the magnesia support, but they undergo fast oxidation to copper oxide upon contact with the ambient for a short time. TEM images show that the catalytically active CuO/MgO material is formed of well-dispersed copper oxide nanoparticles supported on fibrous MgO. CuO/MgO exhibits a remarkable catalytic activity for the monoborylation of aromatic, aliphatic, terminal, and internal alkynes, the products being formed with high regio- (borylation at the less substituted carbon) and stereoselectivity (trans-configured). CuO/MgO exhibits complete chemoselectivity towards the monoborylation of alkynes in the presence of alkenes. Other metal nanoparticles such as gold or palladium are inactive towards borylation, but undergo undesirable oligomerization or partial hydrogenation of the C[TRIPLE BOND]C triple bond. In contrast, platinum, either supported on magnesia or on nanoparticulate ceria, efficiently promotes the stereoselective diborylation of alkynes to yield a cis-configured diboronate alkene. By using platinum as the catalyst we have developed a tandem diborylation/hydrogenation reaction that gives vic-diboronated alkanes from alkynes in one pot. es_ES
dc.description.sponsorship Financial support from the Spanish Ministry of Science and Innovation (Consolider Ingenio 2010 project MULTICAT and CQT2009-11853) is gratefully acknowledged. A.G. thanks the CSIC for a research associate JAE contract. We also thank Fundacion Areces for the financial support of this research. en_EN
dc.format.extent 12 es_ES
dc.language Inglés es_ES
dc.publisher Wiley-VCH Verlag es_ES
dc.relation.ispartof Chemistry - A European Journal es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Boron es_ES
dc.subject Copper es_ES
dc.subject Heterogeneous catalysis es_ES
dc.subject Platinum es_ES
dc.subject Supported catalysts es_ES
dc.subject.classification QUIMICA ORGANICA es_ES
dc.title Stereoselective single (copper) or double (platinum) boronation of alkynes catalyzed by magnesia-supported copper oxide or platinum nanoparticles es_ES
dc.type Artículo es_ES
dc.embargo.lift 10000-01-01
dc.embargo.terms forever es_ES
dc.identifier.doi 10.1002/chem.201002777
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//CTQ2009-11583/ES/Ruptura Fotocaliftica del Agua con Luz Solar/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química es_ES
dc.description.bibliographicCitation Grirrane, A.; Corma Canós, A.; García Gómez, H. (2011). Stereoselective single (copper) or double (platinum) boronation of alkynes catalyzed by magnesia-supported copper oxide or platinum nanoparticles. Chemistry - A European Journal. 17(8):2467-2478. doi:10.1002/chem.201002777 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1002/chem.201002777 es_ES
dc.description.upvformatpinicio 2467 es_ES
dc.description.upvformatpfin 2478 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 17 es_ES
dc.description.issue 8 es_ES
dc.relation.senia 40322
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.contributor.funder Consejo Superior de Investigaciones Científicas es_ES
dc.contributor.funder Fundación Ramón Areces es_ES
dc.description.references Vogels, C., & Westcott, S. (2005). Recent Advances in Organic Synthesis Using Transition Metal-Catalyzed Hydroborations. Current Organic Chemistry, 9(7), 687-699. doi:10.2174/1385272053765060 es_ES
dc.description.references Boebel, T. A., & Hartwig, J. F. (2008). Silyl-Directed, Iridium-Catalyzedortho-Borylation of Arenes. A One-Potortho-Borylation of Phenols, Arylamines, and Alkylarenes. Journal of the American Chemical Society, 130(24), 7534-7535. doi:10.1021/ja8015878 es_ES
dc.description.references Chemler, S. R., Trauner, D., & Danishefsky, S. J. (2001). DieB-Alkyl-Suzuki-Miyaura-Kreuzkupplung: Entwicklung, Untersuchungen zum Mechanismus und Anwendungen in der Naturstoffsynthese. Angewandte Chemie, 113(24), 4676-4701. doi:10.1002/1521-3757(20011217)113:24<4676::aid-ange4676>3.0.co;2-b es_ES
dc.description.references Chemler, S. R., Trauner, D., & Danishefsky, S. J. (2001). The B-Alkyl Suzuki-Miyaura Cross-Coupling Reaction: Development, Mechanistic Study, and Applications in Natural Product Synthesis. Angewandte Chemie International Edition, 40(24), 4544-4568. doi:10.1002/1521-3773(20011217)40:24<4544::aid-anie4544>3.0.co;2-n es_ES
dc.description.references Rubina, M., Rubin, M., & Gevorgyan, V. (2003). Catalytic Enantioselective Hydroboration of Cyclopropenes. Journal of the American Chemical Society, 125(24), 7198-7199. doi:10.1021/ja034210y es_ES
dc.description.references Fernandez, E., Maeda, K., Hooper, M. W., & Brown, J. M. (2000). Catalytic Asymmetric Hydroboration/Amination and Alkylamination with Rhodium Complexes of 1,1′-(2-Diarylphosphino-1-naphthyl)isoquinoline. Chemistry - A European Journal, 6(10), 1840-1846. doi:10.1002/(sici)1521-3765(20000515)6:10<1840::aid-chem1840>3.0.co;2-6 es_ES
dc.description.references Hayashi, T., Matsumoto, Y., & lto, Y. (1991). Asymmetric hydroboration of styrenes catalyzed by cationic chiral phosphine-rhodium(I) complexes. Tetrahedron: Asymmetry, 2(7), 601-612. doi:10.1016/s0957-4166(00)86112-1 es_ES
dc.description.references Brown, J. M., Hulmes, D. I., & Layzell, T. P. (1993). Effective asymmetric hydroboration catalysed by a rhodium complex of 1-(2-diphenylphosphino-1-naphthyl)isoquinoline. Journal of the Chemical Society, Chemical Communications, (22), 1673. doi:10.1039/c39930001673 es_ES
dc.description.references Suzuki, A. (1999). Recent advances in the cross-coupling reactions of organoboron derivatives with organic electrophiles, 1995–1998. Journal of Organometallic Chemistry, 576(1-2), 147-168. doi:10.1016/s0022-328x(98)01055-9 es_ES
dc.description.references Leyva, A., Zhang, X., & Corma, A. (2009). Chemoselective hydroboration of alkynes vs. alkenes over gold catalysts. Chemical Communications, (33), 4947. doi:10.1039/b901953g es_ES
dc.description.references Takahashi, K., Ishiyama, T., & Miyaura, N. (2001). A borylcopper species generated from bis(pinacolato)diboron and its additions to α,β-unsaturated carbonyl compounds and terminal alkynes. Journal of Organometallic Chemistry, 625(1), 47-53. doi:10.1016/s0022-328x(00)00826-3 es_ES
dc.description.references Thomas, R. L., Souza, F. E. S., & Marder, T. B. (2001). Highly efficient monophosphine platinum catalysts for alkyne diboration. Journal of the Chemical Society, Dalton Transactions, (10), 1650-1656. doi:10.1039/b010225n es_ES
dc.description.references Kohno, K., Nakagawa, K., Yahagi, T., Choi, J.-C., Yasuda, H., & Sakakura, T. (2009). Fe(OTf)3-Catalyzed Addition of sp C−H Bonds to Olefins. Journal of the American Chemical Society, 131(8), 2784-2785. doi:10.1021/ja8090593 es_ES
dc.description.references Prateeptongkum, S., Jovel, I., Jackstell, R., Vogl, N., Weckbecker, C., & Beller, M. (2009). First iron-catalyzed synthesis of oximes from styrenes. Chemical Communications, (15), 1990. doi:10.1039/b900326f es_ES
dc.description.references Hattori, H. (1995). Heterogeneous Basic Catalysis. Chemical Reviews, 95(3), 537-558. doi:10.1021/cr00035a005 es_ES
dc.description.references Abad, A., Almela, C., Corma, A., & García, H. (2006). Unique gold chemoselectivity for the aerobic oxidation of allylic alcohols. Chem. Commun., (30), 3178-3180. doi:10.1039/b606257a es_ES
dc.description.references Corma, A., & Garcia, H. (2008). Supported gold nanoparticles as catalysts for organic reactions. Chemical Society Reviews, 37(9), 2096. doi:10.1039/b707314n es_ES
dc.description.references Haruta, M. (1997). Size- and support-dependency in the catalysis of gold. Catalysis Today, 36(1), 153-166. doi:10.1016/s0920-5861(96)00208-8 es_ES
dc.description.references Abad, A., Corma, A., & García, H. (2007). Catalyst Parameters Determining Activity and Selectivity of Supported Gold Nanoparticles for the Aerobic Oxidation of Alcohols: The Molecular Reaction Mechanism. Chemistry - A European Journal, 14(1), 212-222. doi:10.1002/chem.200701263 es_ES
dc.description.references Ishiyama, T., Matsuda, N., Miyaura, N., & Suzuki, A. (1993). Platinum(0)-catalyzed diboration of alkynes. Journal of the American Chemical Society, 115(23), 11018-11019. doi:10.1021/ja00076a081 es_ES
dc.description.references Ishiyama, T., Matsuda, N., Murata, M., Ozawa, F., Suzuki, A., & Miyaura, N. (1996). Platinum(0)-Catalyzed Diboration of Alkynes with Tetrakis(alkoxo)diborons:  An Efficient and Convenient Approach tocis-Bis(boryl)alkenes. Organometallics, 15(2), 713-720. doi:10.1021/om950672b es_ES
dc.description.references DePoy, R., & Kodama, G. (1985). Isolation and characterization of bis(trimethylamine)-diborane(4). Inorganic Chemistry, 24(19), 2871-2872. doi:10.1021/ic00213a001 es_ES
dc.description.references Nguyen, P., Dai, C., Taylor, N. J., Power, W. P., Marder, T. B., Pickett, N. L., & Norman, N. C. (1995). Lewis Base Adducts of Diboron Compounds: Molecular Structures of [B2(cat)2(4-picoline)] and [B2(cat)2(4-picoline)2] (cat = 1,2-O2C6H4). Inorganic Chemistry, 34(17), 4290-4291. doi:10.1021/ic00121a002 es_ES
dc.description.references Power, W. P. (1995). Phosphorus-31 Solid-State NMR of a Phosphine-Borane Adduct: Phosphorus Chemical Shielding Trends in the Isoelectronic Series R3PX, where X = BH3, CH2, NH, O. Journal of the American Chemical Society, 117(6), 1800-1806. doi:10.1021/ja00111a019 es_ES
dc.description.references Ahijado Salomon, M., Braun, T., & Penner, A. (2008). Stepwise Oxygenation of Pinacolborane by a Rhodiumperoxo Complex: Detection of an Intermediate Metal Borate and Perborate. Angewandte Chemie, 120(46), 8999-9003. doi:10.1002/ange.200803768 es_ES
dc.description.references Ahijado Salomon, M., Braun, T., & Penner, A. (2008). Stepwise Oxygenation of Pinacolborane by a Rhodiumperoxo Complex: Detection of an Intermediate Metal Borate and Perborate. Angewandte Chemie International Edition, 47(46), 8867-8871. doi:10.1002/anie.200803768 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem