- -

Environmental-dependent proline accumulation in plants living on gypsum soils

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Environmental-dependent proline accumulation in plants living on gypsum soils

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Boscaiu, Mónica es_ES
dc.contributor.author Bautista Carrascosa, Inmaculada es_ES
dc.contributor.author Lidón Cerezuela, Antonio Luis es_ES
dc.contributor.author Llinares Palacios, Josep Vicent es_ES
dc.contributor.author Lull, Cristina es_ES
dc.contributor.author Donat-Torres, M.P. es_ES
dc.contributor.author Mayoral García-Berlanga, Olga es_ES
dc.contributor.author Vicente, Óscar es_ES
dc.date.accessioned 2014-05-23T12:01:56Z
dc.date.issued 2013-03-26
dc.identifier.issn 0137-5881
dc.identifier.uri http://hdl.handle.net/10251/37715
dc.description.abstract [EN] Biosynthesis of proline¿or other compatible solutes¿is a conserved response of all organisms to different abiotic stress conditions leading to cellular dehydration. However, the biological relevance of this reaction for plant stress tolerance mechanisms remains largely unknown, since there are very few available data on proline levels in stress-tolerant plants under natural conditions. The aim of this work was to establish the relationship between proline levels and different environmental stress factors in plants living on gypsum soils. During the 2-year study (2009¿2010), soil parameters and climatic data were monitored, and proline contents were determined, in six successive samplings, in ten taxa present in selected experimental plots, three in a gypsum area and one in a semiarid zone, both located in the province of Valencia, in south-east Spain. Mean proline values varied significantly between species; however, seasonal variations within species were in many cases even wider, with the most extreme differences registered in Helianthemum syriacum (almost 30 lmol g-1 of DW in summer 2009, as compared to ca. 0.5 in spring, in one of the plots of the gypsum zone). Higher proline contents in plants were generally observed under lower soil humidity conditions, especially in the 2009 summer sampling preceded by a severe drought period. Our results clearly show a positive correlation between the degree of environmental stress and the proline level in most of the taxa included in this study, supporting a functional role of proline in stress tolerance mechanisms of plants adapted to gypsum. However, the main trigger of proline biosynthesis in this type of habitat, as in arid or semiarid zones, is water deficit, while the component of ¿salt stress¿ due to the presence of gypsum in the soil only plays a secondary role. es_ES
dc.description.sponsorship This work has been supported by the Spanish Ministry of Science and Innovation (Project CGL2008-00438/BOS), with contribution from the European Regional Development Fund. en_EN
dc.language Inglés es_ES
dc.publisher Springer Verlag (Germany) es_ES
dc.relation.ispartof Acta Physiologiae Plantarum es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Abiotic stress es_ES
dc.subject Osmolytes es_ES
dc.subject Stress tolerance es_ES
dc.subject Seasonal variation es_ES
dc.subject Soil humidity es_ES
dc.subject Water deficit es_ES
dc.subject.classification BIOLOGIA VEGETAL es_ES
dc.subject.classification BIOQUIMICA Y BIOLOGIA MOLECULAR es_ES
dc.subject.classification BOTANICA es_ES
dc.subject.classification EDAFOLOGIA Y QUIMICA AGRICOLA es_ES
dc.title Environmental-dependent proline accumulation in plants living on gypsum soils es_ES
dc.type Artículo es_ES
dc.embargo.lift 10000-01-01
dc.embargo.terms forever es_ES
dc.identifier.doi 10.1007/s11738-013-1256-3
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//CGL2008-00438/ES/RESPUESTAS DE LAS PLANTAS AL ESTRES ABIOTICO: CORRELACION CON LAS CARACTERISTICAS EDAFICAS DE SUS HABITATS NATURALES/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Agroforestal Mediterráneo - Institut Agroforestal Mediterrani es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Investigación para la Gestión Integral de Zonas Costeras - Institut d'Investigació per a la Gestió Integral de Zones Costaneres es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes es_ES
dc.description.bibliographicCitation Boscaiu, M.; Bautista Carrascosa, I.; Lidón Cerezuela, AL.; Llinares Palacios, JV.; Lull, C.; Donat-Torres, M.; Mayoral García-Berlanga, O.... (2013). Environmental-dependent proline accumulation in plants living on gypsum soils. Acta Physiologiae Plantarum. 35:2193-2204. https://doi.org/10.1007/s11738-013-1256-3 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1007/s11738-013-1256-3 es_ES
dc.description.upvformatpinicio 2193 es_ES
dc.description.upvformatpfin 2204 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 35 es_ES
dc.relation.senia 246129
dc.contributor.funder Ministerio de Ciencia e Innovación
dc.description.references Alvarado JJ, Ruiz JM, López-Cantarero I, Molero J, Romero L (2000) Nitrogen metabolism in five plant species characteristic of gypsiferous soils. J Plant Physiol 156:612–616 es_ES
dc.description.references Ashraf M, Foolad MR (2007) Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ Exp Bot 59:206–216 es_ES
dc.description.references Bates LS, Waldren RP, Teare ID (1973) Rapid determination of free proline for water stress studies. Plant Soil 39:205–207 es_ES
dc.description.references Briens M, Larher F (1982) Osmoregulation in halophytic higher plants: a comparative study of soluble carbohydrates, polyols, betaines and free proline. Plant, Cell Environ 5:287–292 es_ES
dc.description.references Burriel F, Hernando V (1947) Nuevo método para determinar el fósforo asimilable en los suelos. Anales de Edafología y Fisiología Vegetal 9:611–622 es_ES
dc.description.references Caballero I, Olano JM, Loidi J, Escudero A (2003) Seed bank structure along a semi-arid gypsum gradient in Central Spain. J Arid Environ 55:287–299 es_ES
dc.description.references Escudero A, Carnes LF, Pérez García F (1997) Seed germination of gypsophytes and gypsovags in semi-arid central Spain. J Arid Environ 36:487–497 es_ES
dc.description.references Escudero A, Somolinos RC, Olano JM, Rubio A (1999) Factors controlling the establishment of Helianthemum squamatum, an endemic gypsophite of semi-arid Spain. J Ecol 87:290–302 es_ES
dc.description.references FAO (1990) Management of gypsiferous soils. FAO Soils Bull 62 es_ES
dc.description.references Ferriol M, Pérez I, Merle H, Boira H (2006) Ecological germination requirements of the aggregate species Teucrium pumilum (Labiatae) endemic to Spain. Plant Soil 284:205–216 es_ES
dc.description.references Flowers TJ, Colmer TD (2008) Salinity tolerance in halophytes. New Phytol 179:945–963 es_ES
dc.description.references Flowers TJ, Troke PF, Yeo AR (1977) The mechanism of salt tolerance in halophytes. Ann Rev Plant Physiol 28:89–121 es_ES
dc.description.references Gil R, Lull C, Boscaiu M, Bautista I, Lidón A, Vicente O (2011) Soluble carbohydrates as osmolytes in several halophytes from a Mediterranean salt marsh. Not Bot Horti Agrobo 39(2):9–17 es_ES
dc.description.references Grigore MN, Boscaiu M, Vicente O (2011) Assessment of the relevance of osmolyte biosynthesis for salt tolerance of halophytes under natural conditions. Eur J Plant Sci Biotech 5:12–19 es_ES
dc.description.references Hare PD, Cress WA, Van Standen J (1998) Dissecting the roles of osmolyte accumulation during stress. Plant Cell Environ 21:535–553 es_ES
dc.description.references Keeney DR, Nelson DW (1982) Nitrogen inorganic forms. In: Page AL et al (eds) Methods of soil analysis, part 2: chemical and microbiological properties. Soil Science Society of America, Madison, pp 643–698 es_ES
dc.description.references Knudsen D, Peterson GA, Pratt PF (1982) Lithium, Sodium and Potassium. In: Page AL et al (eds) Methods of soil analysis, part 2: chemical and microbiological properties. Soil Science Society of America, Madison, pp 225–246 es_ES
dc.description.references Kuo S (1996) Phosphorus. In: Spark DL (ed) Methods of soil analysis: chemical methods, part 3. Soil Science Society of America, Madison, pp 869–919 es_ES
dc.description.references Martens H, Maes T (1989) Multivariate calibration. Wiley, New York, pp 97–108 es_ES
dc.description.references Martínez-Duro E, Ferrandis P, Escudero A, Luzuriaga AL, Herranz JM (2010) Secondary old-field succession in an ecosystem with restrictive soils: does time from abandonment matter? Appl Veg Sci 13:234–248 es_ES
dc.description.references Meyer SE (1986) The ecology of gypsophile endemism in the eastern Mojave desert. Ecology 67:1303–1313 es_ES
dc.description.references Meyer SE, García-Moya E (1989) Plant community patterns and soil moisture regime in gypsum grasslands of north central Mexico. J Arid Environ 16:147–155 es_ES
dc.description.references Meyer SE, García-Moya E, Lagunes-Espinoza LC (1992) Topographic and soil surface effects on gypsophile plant community patterns in central Mexico. J Veg Sci 3:429–438 es_ES
dc.description.references Moruno F, Soriano P, Vicente O, Boscaiu M, Estrelles E (2011) Opportunistic germination behaviour of Gypsophila (Caryophyllaceae) in two priority habitats from semi-arid Mediterranean steppes. Not Bot Horti Agrobo 39(1):18–23 es_ES
dc.description.references Mota JF, Sánchez Gómez P, Merlo Calvente ME, Catalán Rodríguez P, Laguna Lumbreras E, de la Cruz Rot M, Navarro Reyes FB, Marchal Gallardo F, Bartolomé Esteban C, Martínez Labarga JM, Sainz Ollero H, Valle Tendero F, Serra Laliga L, Martínez Hernández F, Garrido Becerra JA, Pérez García FJ (2009) Aproximación a la checklist de los gipsófitos ibéricos. Anales de Biología 31:71–80 es_ES
dc.description.references Murakeözy ÉP, Nagy Z, Duhazé C, Bouchereau A, Tuba Z (2003) Seasonal changes in the levels of compatible osmolytes in three halophytic species of inland saline vegetation in Hungary. J Plant Physiol 160:395–401 es_ES
dc.description.references Nelson DW, Sommers LE (1982) Total carbon, organic carbon, and organic matter. In: Page AL et al (eds) Methods of soil analysis, part 2: chemical and microbiological properties. Soil Science Society of America, Madison, pp 539–577 es_ES
dc.description.references Palacio S, Escudero A, Montserrat-Martí G, Maestro M, Milla R, Albert M (2007) Plants living on gypsum: beyond the specialist model. Ann Bot 99:333–343 es_ES
dc.description.references Parsons RF (1977) Gypsophily in plants—a review. Am Midl Nat 96:1–20 es_ES
dc.description.references Pueyo Y, Alados CL, Maestro M, Komac B (2007) Gypsophile vegetation patterns under a range of soil properties induced by topographical position. Plant Ecol 189:301–311 es_ES
dc.description.references Rivas-Martínez S, Rivas-Sáenz S (2009) Worldwide Bioclimatic Classification System. Phytosociological Research Center, Complutense University of Madrid, Spain. http://www.globalbioclimatics.org/ . Accessed 15 Nov 2012 es_ES
dc.description.references Romão RL, Escudero A (2005) Gypsum physical soil crusts and the existence of gypsophytes in semi-arid central Spain. Plant Ecol 181:127–137 es_ES
dc.description.references Rubio A, Escudero A (2000) Small-scale spatial soil-plant relationship in semi-arid gypsum environment. Plant Soil 220:139–150 es_ES
dc.description.references Ruíz JM, López-Cantarero I, Rivero RM, Romero L (2003) Sulphur phytoaccumulation in plant species characteristic of gypsiferous soils. Int J Phytorem 5:203–210 es_ES
dc.description.references Szabados L, Savouré A (2010) Proline: a multifunctional amino acid. Trends Plant Sci 15:89–97 es_ES
dc.description.references Szabados L, Kovács H, Zilberstein A, Bouchereau A (2011) Plants in extreme environments: importance of protective compounds in stress tolerance. Adv Bot Res 57:105–150 es_ES
dc.description.references Tecator Application Note (1984) AN 5226: Determination of ammonium in 2 M KCl soil extracts by FIAstar 5000. AN 5201: Determination of the sum of nitrate and nitrite in water by FIAstar 5000. (Adapted for 2 M KCl soil extracts) es_ES
dc.description.references Tipirdamaz R, Gagneul D, Duhazé C, Aïnouche A, Monnier C, Özkum D, Larher F (2006) Clustering of halophytes from an inland salt marsh in Turkey according to their ability to accumulate sodium and nitrogenous osmolytes. Environ Exp Bot 57:139–153 es_ES
dc.description.references Verheye WH, Boyadgiev TG (1997) Evaluating the land use potential of gypsiferous soils from field pedogenic characteristics. Soil Use Manage 13:97–103 es_ES
dc.description.references Vicente O, Boscaiu M, Naranjo MA, Estrelles E, Bellés JM, Soriano P (2004) Responses to salt stress in the halophyte Plantago crassifolia (Plantaginaceae). J Arid Environ 58:463–481 es_ES
dc.description.references Yancey PH (2005) Organic osmolytes as compatible, metabolic and counteracting cytoprotectants in high osmolarity and other stresses. J Exp Biol 208:2819–2830 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem