- -

High precision symplectic integrators for the Solar System

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

High precision symplectic integrators for the Solar System

Mostrar el registro completo del ítem

Farrés, A.; Laskar, J.; Blanes Zamora, S.; Casas Perez, F.; Makazaga, J.; Murua, A. (2013). High precision symplectic integrators for the Solar System. Celestial Mechanics and Dynamical Astronomy. 116:141-174. https://doi.org/10.1007/s10569-013-9479-6

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/38065

Ficheros en el ítem

Metadatos del ítem

Título: High precision symplectic integrators for the Solar System
Autor: Farrés, Ariadna Laskar, Jacques Blanes Zamora, Sergio Casas Perez, Fernando Makazaga, Joseba Murua, Ander
Entidad UPV: Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
Fecha difusión:
Resumen:
Using a Newtonian model of the Solar System with all 8 planets, we perform extensive tests on various symplectic integrators of high orders, searching for the best splitting scheme for long term studies in the Solar System. ...[+]
Palabras clave: Hamiltonian systems , Heliocentric coordinates , Jacobi coordinates , Planetary motion , Splitting sympletic methods , Symplectic integrators
Derechos de uso: Reserva de todos los derechos
Fuente:
Celestial Mechanics and Dynamical Astronomy. (issn: 0923-2958 )
DOI: 10.1007/s10569-013-9479-6
Editorial:
Springer Verlag (Germany)
Versión del editor: http://dx.doi.org/10.1007/s10569-013-9479-6
Código del Proyecto:
info:eu-repo/grantAgreement/MICINN//MTM2010-18246-C03-02/ES/METODOS DE ESCISION Y COMPOSICION EN INTEGRACION NUMERICA GEOMETRICA/
info:eu-repo/grantAgreement/EC/FP7/215458/EU/Towards the next generation of the Geological Time Scale for the last 100 million years – the European contribution to EARTHTIME/
info:eu-repo/grantAgreement/MICINN//MTM2010-18246-C03-03/ES/TECNICAS ALGEBRAICAS EN INTEGRACION GEOMETRICA/
Agradecimientos:
This work was supported by GTSNext project. The work of SB, FC, JM and AM has been partially supported by Ministerio de Ciencia e Innovacion (Spain) under project MTM2010-18246-C03 (co-financed by FEDER Funds of the European ...[+]
Tipo: Artículo

References

Blanes, S., Casas, F., Farrés, A., Laskar, J., Makazaga, J., Murua, A.: New families of symplectic splitting methods for numerical integration in dynamical astronomy. Appl. Number. Math. (2013). doi: 10.1016/j.apnum.2013.01.003

Candy, J., Rozmus, W.: A symplectic integration algorithm for separable hamiltonian functions. J. Comput. Phys. 92(1), 230–256 (1991)

Chambers, J.E.: A hybrid symplectic integrator that permits close encounters between massive bodies. Mon. Notices R. Astron. Soc. 304, 793–799 (1999) [+]
Blanes, S., Casas, F., Farrés, A., Laskar, J., Makazaga, J., Murua, A.: New families of symplectic splitting methods for numerical integration in dynamical astronomy. Appl. Number. Math. (2013). doi: 10.1016/j.apnum.2013.01.003

Candy, J., Rozmus, W.: A symplectic integration algorithm for separable hamiltonian functions. J. Comput. Phys. 92(1), 230–256 (1991)

Chambers, J.E.: A hybrid symplectic integrator that permits close encounters between massive bodies. Mon. Notices R. Astron. Soc. 304, 793–799 (1999)

Chambers, J.E., Murison, M.A.: Pseudo-high-order symplectic integrators. Astron. J. 119(1), 425 (2000)

Danby, J.M.A.: Fundamentals of Celestial Mechanics. 2nd Edition, revised and enlarged. XII, p. 484. Willmann-Bell, London (1992)

Duncan, M.J., Levison, H.F., Lee, M.H.: A multiple time step symplectic algorithm for integrating close encounters. Astrono. J. 116, 2067–2077 (1998)

Fienga, A., Laskar, J., Kuchynka, P., Manche, H., Desvignes, G., Gastineau, M., Cognard, I., Theureau, G.: The INPOP10a planetary ephemeris and its applications in fundamental physics. Celest. Mech. Dyn. Astron. 111, 363–385 (2011)

Gladman, B., Duncan, M.: On the fates of minor bodies in the outer solar system. Astron. J. 100, 1680–1693 (1990)

Goldman, D., Kaper, T.: $$N$$ th-order operator splitting schemes and nonreversible systems. SIAM J. Numer. Anal. 33, 349–367 (1996)

Hairer, E., Lubich, C., Wanner, G.: Geometric numerical integration. Structure-preserving algorithms for ordinary differential equations, 2nd edn. Springer, Berlin (2006)

Kahan, W.: Pracniques: further remarks on reducing truncation errors. Commun. ACM 8, 40 (1965)

Kinoshita, H., Yoshida, H., Nakai, H.: Symplectic integrators and their application to dynamical astronomy. Celest. Mech. Dyn. Astron. 50, 59–71 (1991)

Koseleff, P.V.: Calcul formel pour les méthodes de lie en mécanique hamiltonienne. PhD thesis, Ecole Polytechnique (1993a)

Koseleff, P.V.: Relations among lie formal series and construction of symplectic integrators. In: Cohen, G. D., Mora, T., Moreno, O. (eds.) Applied Algebra, Algebraic Algorithms and Error Correcting Codes. 10th International symposium, (AAECC-10), San Juan de Puerto Rico, Puerto Rico, May 10–14, 1993, proceedings. Lect. Not. Comp. Sci, vol 673, pp. 213–230. Springer, New York (1993b)

Koseleff, P.V.: Exhaustive search of symplectic integrators using computer algebra. Integration algorithms and classical mechanics, Fields Inst. Commun. 10, 103–120 (1996)

Laskar, J.: A numerical experiment on the chaotic behaviour of the solar system. Nature 338, 237 (1989)

Laskar, J.: The chaotic motion of the solar system—a numerical estimate of the size of the chaotic zones. Icarus 88, 266–291 (1990a)

Laskar, J.: Les Méthodes Modernes de la Mecánique Céleste (Goutelas, France, 1989), Editions Frontières, chap Systèmes de Variables et Eléments, pp. 63–87 (1990b)

Laskar, J.: Analytical framework in poincaré variables for the motion of the solar system. In: Roy, A. (ed.) Predictability, Stability, and Chaos in N-Body Dynamical Systems, pp. 93–114. NATO, Plenum Press, ASI (1991)

Laskar, J., Robutel, P.: High order symplectic integrators for perturbed hamiltonian systems. Celest. Mech. Dyn. Astron. 80, 39–62 (2001)

Laskar, J., Quinn, T., Tremaine, S.: Confirmation of resonant structure in the solar system. Icarus 95, 148–152 (1992)

Laskar, J., Robutel, P., Joutel, F., Gastineau, M., Correia, A.C.M., Levrard, B.: A long-term numerical solution for the insolation quantities of the earth. Astron. Astrophys. 428, 261–285 (2004)

Laskar, J., Fienga, A., Gastineau, M., Manche, H.: La2010: a new orbital solution for the long-term motion of the earth. Astron. Astrophys. 532, 89 (2011a)

Laskar, J., Gastineau, M., Delisle, J.B., Farrés, A., Fienga, A.: Strong chaos induced by close encounters with ceres and vesta. Astron. Astrophys. 532, L4 (2011b)

Lourens, L. J., Hilgen, F. J., Shackleton, N. J., Laskar, J., Wilson, D.: The neogene period. In: Gradstein, F., Ogg, J., Smith, A. (eds.) A Geologic. Time scale, pp 409–440. Cambridge University Press, UK (2004)

McLachlan, R.I.: Composition methods in the presence of small parameters. BIT Numer. Math. 35, 258–268 (1995)

McLachlan, R.I.: Families of high-order composition methods. Numer. Algorithms 31, 233–246 (2002)

McLachlan, R., Quispel, R.: Splitting methods. Acta Numerica 11, 341–434 (2002)

Milankovitch, M.: Kanon der Erdbestrahlung und seine Anwendung auf das Eiszeitenproblem. Spec. Acad. R, Serbe, Belgrade (1941)

Morbidelli, A.: Modern integrations of solar system dynamics. Annu. Rev. Earth Planet. Sci. 30, 89–112 (2002)

Murua, A., Sanz-Serna, J.: Order conditions for numerical integrators obtained by composing simpler integrators. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 357(1754), 1079–1100 (1999)

Quinn, T.R., Tremaine, S., Duncan, M.: A three million year integration of the earth’s orbit. Astron. J. 101, 2287–2305 (1991)

Saha, P., Tremaine, S.: Long-term planetary integration with individual time steps. Astron. J. 108, 1962–1969 (1994)

Sheng, Q.: Solving linear partial differential equations by exponential splitting. IMA J. Numer. Anal. 9, 199–212 (1989)

Sussman, G.J., Wisdom, J.: Chaotic evolution of the solar system. Science 257, 56–62 (1992)

Suzuki, M.: Fractal decomposition of exponential operators with applications to many-body theories and monte carlo simulations. Phys. Lett. A 146(6), 319–323 (1990)

Suzuki, M.: General theory of fractal path integrals with applications to many-body theories and statistical physics. J. Math. Phys. 32(2), 400–407 (1991)

Touma, J., Wisdom, J.: Lie-poisson integrators for rigid body dynamics in the solar system. Astron. J. 107, 1189–1202 (1994)

Viswanath, D.: How many timesteps for a cycle? Analysis of the Wisdom–Holman algorithm. BIT Numer. Math. 42, 194–205 (2002)

Wisdom, J.: Symplectic correctors for canonical heliocentric n-body maps. Astron. J. 131(4), 2294 (2006)

Wisdom, J., Holman, M.: Symplectic maps for the n-body problem. Astron. J. 102, 1528–1538 (1991)

Wisdom, J., Holman, M., Touma, J.: Symplectic correctors. Fields Inst. Commun. 10, 217 (1996)

Yoshida, H.: Construction of higher order symplectic integrators. Phys. Lett. A 150(5–7), 262–268 (1990)

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem