- -

Removing the Correlation Term in Option Pricing HestonModel: Numerical Analysis and Computing

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Removing the Correlation Term in Option Pricing HestonModel: Numerical Analysis and Computing

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Company Rossi, Rafael es_ES
dc.contributor.author Jódar Sánchez, Lucas Antonio es_ES
dc.contributor.author El-Fakharany, Mohamed es_ES
dc.contributor.author Casabán Bartual, Mª Consuelo es_ES
dc.date.accessioned 2014-09-09T07:14:04Z
dc.date.available 2014-09-09T07:14:04Z
dc.date.issued 2013-05
dc.identifier.issn 1085-3375
dc.identifier.uri http://hdl.handle.net/10251/39490
dc.description.abstract [EN] This paper deals with the numerical solution of option pricing stochastic volatility model described by a time-dependent, twodimensional convection-diffusion reaction equation. Firstly, the mixed spatial derivative of the partial differential equation (PDE) is removed bymeans of the classical technique for reduction of second-order linear partial differential equations to canonical form. An explicit difference scheme with positive coefficients and only five-point computational stencil is constructed. The boundary conditions are adapted to the boundaries of the rhomboid transformed numerical domain. Consistency of the scheme with the PDE is shown and stepsize discretization conditions in order to guarantee stability are established. Illustrative numerical examples are included. es_ES
dc.description.sponsorship This work has been partially supported by the European Union in the FP7-PEOPLE-2012-ITN Program under Grant Agreement no. 304617 (FP7 Marie Curie Action, Project Multi-ITN STRIKE-Novel Methods in Computational Finance) and by the Spanish MEYC Grant DPI2010-20891-C02-01. en_EN
dc.language Inglés es_ES
dc.publisher Hindawi Publishing Corporation es_ES
dc.relation.ispartof Abstract and Applied Analysis es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Stochastic volatility es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title Removing the Correlation Term in Option Pricing HestonModel: Numerical Analysis and Computing es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1155/2013/246724
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//DPI2010-20891-C02-01/ES/MODELIZACION Y METODOS NUMERICOS, ALEATORIOS Y DETERMINISTAS, PARA EL FILTRADO DE PARTICULAS DIESEL EN MOTORES DE COMBUSTION INTERNA SOBREALIMENTADOS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/FP7/304617/EU/Novel Methods in Computational Finance/
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Matemática Multidisciplinar - Institut Universitari de Matemàtica Multidisciplinària es_ES
dc.description.bibliographicCitation Company Rossi, R.; Jódar Sánchez, LA.; El-Fakharany, M.; Casabán Bartual, MC. (2013). Removing the Correlation Term in Option Pricing HestonModel: Numerical Analysis and Computing. Abstract and Applied Analysis. 2013:1-11. https://doi.org/10.1155/2013/246724 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1155/2013/246724 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 11 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 2013 es_ES
dc.relation.senia 246001
dc.contributor.funder European Commission
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.description.references HULL, J., & WHITE, A. (1987). The Pricing of Options on Assets with Stochastic Volatilities. The Journal of Finance, 42(2), 281-300. doi:10.1111/j.1540-6261.1987.tb02568.x es_ES
dc.description.references Heston, S. L. (1993). A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options. Review of Financial Studies, 6(2), 327-343. doi:10.1093/rfs/6.2.327 es_ES
dc.description.references Pascucci, A. (2011). PDE and Martingale Methods in Option Pricing. Bocconi & Springer Series. doi:10.1007/978-88-470-1781-8 es_ES
dc.description.references Benhamou, E., Gobet, E., & Miri, M. (2010). Time Dependent Heston Model. SIAM Journal on Financial Mathematics, 1(1), 289-325. doi:10.1137/090753814 es_ES
dc.description.references Hilber, N., Matache, A.-M., & Schwab, C. (2005). Sparse wavelet methods for option pricing under stochastic volatility. The Journal of Computational Finance, 8(4), 1-42. doi:10.21314/jcf.2005.131 es_ES
dc.description.references Zhu, W., & Kopriva, D. A. (2009). A Spectral Element Approximation to Price European Options with One Asset and Stochastic Volatility. Journal of Scientific Computing, 42(3), 426-446. doi:10.1007/s10915-009-9333-x es_ES
dc.description.references Clarke, N., & Parrott, K. (1999). Multigrid for American option pricing with stochastic volatility. Applied Mathematical Finance, 6(3), 177-195. doi:10.1080/135048699334528 es_ES
dc.description.references Düring, B., & Fournié, M. (2012). High-order compact finite difference scheme for option pricing in stochastic volatility models. Journal of Computational and Applied Mathematics, 236(17), 4462-4473. doi:10.1016/j.cam.2012.04.017 es_ES
dc.description.references Zvan, R., Forsyth, P., & Vetzal, K. (2003). Negative coefficients in two-factor option pricing models. The Journal of Computational Finance, 7(1), 37-73. doi:10.21314/jcf.2003.096 es_ES
dc.description.references Company, R., Jódar, L., & Pintos, J.-R. (2009). Consistent stable difference schemes for nonlinear Black-Scholes equations modelling option pricing with transaction costs. ESAIM: Mathematical Modelling and Numerical Analysis, 43(6), 1045-1061. doi:10.1051/m2an/2009014 es_ES
dc.description.references Company, R., Jódar, L., & Pintos, J.-R. (2010). Numerical analysis and computing for option pricing models in illiquid markets. Mathematical and Computer Modelling, 52(7-8), 1066-1073. doi:10.1016/j.mcm.2010.02.037 es_ES
dc.description.references Casabán, M.-C., Company, R., Jódar, L., & Pintos, J.-R. (2011). Numerical analysis and computing of a non-arbitrage liquidity model with observable parameters for derivatives. Computers & Mathematics with Applications, 61(8), 1951-1956. doi:10.1016/j.camwa.2010.08.009 es_ES
dc.description.references Kangro, R., & Nicolaides, R. (2000). Far Field Boundary Conditions for Black--Scholes Equations. SIAM Journal on Numerical Analysis, 38(4), 1357-1368. doi:10.1137/s0036142999355921 es_ES
dc.description.references EHRHARDT, M., & MICKENS, R. E. (2008). A FAST, STABLE AND ACCURATE NUMERICAL METHOD FOR THE BLACK–SCHOLES EQUATION OF AMERICAN OPTIONS. International Journal of Theoretical and Applied Finance, 11(05), 471-501. doi:10.1142/s0219024908004890 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem