- -

The effect of high-In content capping layers on low-density bimodal-sized InAs quantum dots

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

The effect of high-In content capping layers on low-density bimodal-sized InAs quantum dots

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Trevisi, G. es_ES
dc.contributor.author Suárez, I. es_ES
dc.contributor.author Seravalli, L. es_ES
dc.contributor.author Rivas, D. es_ES
dc.contributor.author Frigeri, P. es_ES
dc.contributor.author Muñoz Matutano, Guillermo es_ES
dc.contributor.author Grillo, V. es_ES
dc.contributor.author Nasi, L. es_ES
dc.contributor.author Martínez-Pastor, J. es_ES
dc.date.accessioned 2014-11-25T09:15:53Z
dc.date.available 2014-11-25T09:15:53Z
dc.date.issued 2013-05-21
dc.identifier.issn 0021-8979
dc.identifier.uri http://hdl.handle.net/10251/44784
dc.description.abstract [EN] The structural and morphological features of bimodal-sized InAs/(In) GaAs quantum dots with density in the low 10(9) cm(-2) range were analyzed with transmission electron microscopy and atomic force microscopy and were related to their optical properties, investigated with photoluminescence and time-resolved photoluminescence. We show that only the family of small quantum dots (QDs) is able to emit narrow photoluminescence peaks characteristic of single-QD spectra; while the behavior of large QDs is attributed to large strain fields that may induce defects affecting their optical properties, decreasing the optical intensity and broadening the homogeneous linewidth. Then, by using a rate-equation model for the exciton recombination dynamics, we show that thermal population of dark states is inhibited in both QD families capped by high In content InGaAs layers. We discuss this behavior in terms of alloy disorder and increased density of point defects in the InGaAs pseudomorphic layer. es_ES
dc.description.sponsorship This work was supported through the Spanish MCINN and Generalitat Valenciana Grants Nos. TEC2011-29120-C05-01 and PROMETEO/2009/074, respectively, and by the 'SANDiE' Network of Excellence of EC, Contract No. NMP4-CT-2004-500101. AFM measurements were carried out at CIM-Parma University.
dc.language Inglés es_ES
dc.publisher American Institute of Physics (AIP) es_ES
dc.relation.ispartof Journal of Applied Physics es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Carrier transfer es_ES
dc.subject Mu-m es_ES
dc.subject Well es_ES
dc.subject Photoluminescence es_ES
dc.subject Luminescence es_ES
dc.subject Evolution es_ES
dc.subject Emission es_ES
dc.subject Dynamics es_ES
dc.subject Islands es_ES
dc.subject Escape es_ES
dc.subject.classification FISICA APLICADA es_ES
dc.title The effect of high-In content capping layers on low-density bimodal-sized InAs quantum dots es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1063/1.4805351
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//TEC2011-29120-C05-01/ES/PUNTOS CUANTICOS SEMICONDUCTORES COMO CLAVE PARA FUTURAS TECNOLOGIAS: DE LA NANOFOTONICA A LA NANOPLASMONICA/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/FP6/500101/EU/Self-Assembled semiconductor Nanostructures for new Devices in photonics and Electronics/SANDIE/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEO09%2F2009%2F074/ES/Nanotecnología y Nanomateriales para la Conversión Solar Fotovoltaica/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions es_ES
dc.description.bibliographicCitation Trevisi, G.; Suárez, I.; Seravalli, L.; Rivas, D.; Frigeri, P.; Muñoz Matutano, G.; Grillo, V.... (2013). The effect of high-In content capping layers on low-density bimodal-sized InAs quantum dots. Journal of Applied Physics. 113(19):1943061-1943068. https://doi.org/10.1063/1.4805351 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1063/1.4805351 es_ES
dc.description.upvformatpinicio 1943061 es_ES
dc.description.upvformatpfin 1943068 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 113 es_ES
dc.description.issue 19 es_ES
dc.relation.senia 255067
dc.contributor.funder Ministerio de Ciencia e Innovación
dc.contributor.funder Generalitat Valenciana
dc.contributor.funder European Commission
dc.description.references Salter, C. L., Stevenson, R. M., Farrer, I., Nicoll, C. A., Ritchie, D. A., & Shields, A. J. (2010). An entangled-light-emitting diode. Nature, 465(7298), 594-597. doi:10.1038/nature09078 es_ES
dc.description.references Faraon, A., Majumdar, A., Englund, D., Kim, E., Bajcsy, M., & Vučković, J. (2011). Integrated quantum optical networks based on quantum dots and photonic crystals. New Journal of Physics, 13(5), 055025. doi:10.1088/1367-2630/13/5/055025 es_ES
dc.description.references Ba Hoang, T., Beetz, J., Midolo, L., Skacel, M., Lermer, M., Kamp, M., … Fiore, A. (2012). Enhanced spontaneous emission from quantum dots in short photonic crystal waveguides. Applied Physics Letters, 100(6), 061122. doi:10.1063/1.3683541 es_ES
dc.description.references Joyce, P. B., Krzyzewski, T. J., Bell, G. R., Jones, T. S., Malik, S., Childs, D., & Murray, R. (2000). Effect of growth rate on the size, composition, and optical properties of InAs/GaAs quantum dots grown by molecular-beam epitaxy. Physical Review B, 62(16), 10891-10895. doi:10.1103/physrevb.62.10891 es_ES
dc.description.references Huang, S., Niu, Z., Ni, H., Xiong, Y., Zhan, F., Fang, Z., & Xia, J. (2007). Fabrication of ultra-low density and long-wavelength emission InAs quantum dots. Journal of Crystal Growth, 301-302, 751-754. doi:10.1016/j.jcrysgro.2006.11.299 es_ES
dc.description.references Trevisi, G., Seravalli, L., Frigeri, P., & Franchi, S. (2009). Low density InAs/(In)GaAs quantum dots emitting at long wavelengths. Nanotechnology, 20(41), 415607. doi:10.1088/0957-4484/20/41/415607 es_ES
dc.description.references Alloing, B., Zinoni, C., Zwiller, V., Li, L. H., Monat, C., Gobet, M., … Kapon, E. (2005). Growth and characterization of single quantum dots emitting at 1300 nm. Applied Physics Letters, 86(10), 101908. doi:10.1063/1.1872213 es_ES
dc.description.references Seravalli, L., Trevisi, G., Frigeri, P., Franchi, S., Geddo, M., & Guizzetti, G. (2009). The role of wetting layer states on the emission efficiency of InAs/InGaAs metamorphic quantum dot nanostructures. Nanotechnology, 20(27), 275703. doi:10.1088/0957-4484/20/27/275703 es_ES
dc.description.references Torchynska, T. V. (2008). Some aspects of exciton thermal exchange in InAs quantum dots coupled with InGaAs/GaAs quantum wells. Journal of Applied Physics, 104(7), 074315. doi:10.1063/1.2965196 es_ES
dc.description.references Nee, T.-E., Wu, Y.-F., Cheng, C.-C., & Shen, H.-T. (2006). Carrier dynamics study of the temperature- and excitation-dependent photoluminescence of InAs∕GaAs quantum dots. Journal of Applied Physics, 99(1), 013506. doi:10.1063/1.2150254 es_ES
dc.description.references Muñoz-Matutano, G., Suárez, I., Canet-Ferrer, J., Alén, B., Rivas, D., Seravalli, L., … Martínez-Pastor, J. (2012). Size dependent carrier thermal escape and transfer in bimodally distributed self assembled InAs/GaAs quantum dots. Journal of Applied Physics, 111(12), 123522. doi:10.1063/1.4729315 es_ES
dc.description.references Adhikary, S., Aytac, Y., Meesala, S., Wolde, S., Unil Perera, A. G., & Chakrabarti, S. (2012). A multicolor, broadband (5–20 μm), quaternary-capped InAs/GaAs quantum dot infrared photodetector. Applied Physics Letters, 101(26), 261114. doi:10.1063/1.4773373 es_ES
dc.description.references Krishna, S., Raghavan, S., von Winckel, G., Stintz, A., Ariyawansa, G., Matsik, S. G., & Perera, A. G. U. (2003). Three-color (λp1∼3.8 μm, λp2∼8.5 μm, and λp3∼23.2 μm) InAs/InGaAs quantum-dots-in-a-well detector. Applied Physics Letters, 83(14), 2745-2747. doi:10.1063/1.1615838 es_ES
dc.description.references Liu, H. Y., Hopkinson, M., Harrison, C. N., Steer, M. J., Frith, R., Sellers, I. R., … Skolnick, M. S. (2003). Optimizing the growth of 1.3 μm InAs/InGaAs dots-in-a-well structure. Journal of Applied Physics, 93(5), 2931-2936. doi:10.1063/1.1542914 es_ES
dc.description.references Seravalli, L., Trevisi, G., Frigeri, P., Rivas, D., Muñoz-Matutano, G., Suárez, I., … Martínez-Pastor, J. P. (2011). Single quantum dot emission at telecom wavelengths from metamorphic InAs/InGaAs nanostructures grown on GaAs substrates. Applied Physics Letters, 98(17), 173112. doi:10.1063/1.3584132 es_ES
dc.description.references Alloing, B., Zinoni, C., Li, L. H., Fiore, A., & Patriarche, G. (2007). Structural and optical properties of low-density and In-rich InAs∕GaAs quantum dots. Journal of Applied Physics, 101(2), 024918. doi:10.1063/1.2427104 es_ES
dc.description.references Seravalli, L., Trevisi, G., & Frigeri, P. (2012). Design and growth of metamorphic InAs/InGaAs quantum dots for single photon emission in the telecom window. CrystEngComm, 14(20), 6833. doi:10.1039/c2ce25860a es_ES
dc.description.references Grillo, V., & Rossi, F. (2011). A new insight on crystalline strain and defect features by STEM–ADF imaging. Journal of Crystal Growth, 318(1), 1151-1156. doi:10.1016/j.jcrysgro.2010.10.180 es_ES
dc.description.references Grillo, V., Mueller, K., Volz, K., Glas, F., Grieb, T., & Rosenauer, A. (2011). Strain, composition and disorder in ADF imaging of semiconductors. Journal of Physics: Conference Series, 326, 012006. doi:10.1088/1742-6596/326/1/012006 es_ES
dc.description.references Lutz, M. A., Feenstra, R. M., Mooney, P. M., Tersoff, J., & Chu, J. O. (1994). Facet formation in strained Si1−x Gex films. Surface Science, 316(3), L1075-L1080. doi:10.1016/0039-6028(94)91208-4 es_ES
dc.description.references Kamins, T. I., Medeiros-Ribeiro, G., Ohlberg, D. A. A., & Stanley Williams, R. (1999). Evolution of Ge islands on Si(001) during annealing. Journal of Applied Physics, 85(2), 1159-1171. doi:10.1063/1.369255 es_ES
dc.description.references Kratzer, P., Liu, Q. K. K., Acosta-Diaz, P., Manzano, C., Costantini, G., Songmuang, R., … Kern, K. (2006). Shape transition during epitaxial growth ofInAsquantum dots onGaAs(001): Theory and experiment. Physical Review B, 73(20). doi:10.1103/physrevb.73.205347 es_ES
dc.description.references Grillo, V., & Rotunno, E. (2013). STEM_CELL: A software tool for electron microscopy: Part I—simulations. Ultramicroscopy, 125, 97-111. doi:10.1016/j.ultramic.2012.10.016 es_ES
dc.description.references Trevisi, G., Seravalli, L., Frigeri, P., Bocchi, C., Grillo, V., Nasi, L., … Martínez-Pastor, J. (2011). MBE growth and properties of low-density InAs/GaAs quantum dot structures. Crystal Research and Technology, 46(8), 801-804. doi:10.1002/crat.201000622 es_ES
dc.description.references Seravalli, L., Bocchi, C., Trevisi, G., & Frigeri, P. (2010). Properties of wetting layer states in low density InAs quantum dot nanostructures emitting at 1.3 μm: Effects of InGaAs capping. Journal of Applied Physics, 108(11), 114313. doi:10.1063/1.3518049 es_ES
dc.description.references Torchynska, T. V., Casas Espinola, J. L., Borkovska, L. V., Ostapenko, S., Dybiec, M., Polupan, O., … Malloy, K. J. (2007). Thermal activation of excitons in asymmetric InAs dots-in-a-well InxGa1−xAs∕GaAs structures. Journal of Applied Physics, 101(2), 024323. doi:10.1063/1.2427105 es_ES
dc.description.references Brusaferri, L., Sanguinetti, S., Grilli, E., Guzzi, M., Bignazzi, A., Bogani, F., … Franchi, S. (1996). Thermally activated carrier transfer and luminescence line shape in self‐organized InAs quantum dots. Applied Physics Letters, 69(22), 3354-3356. doi:10.1063/1.117304 es_ES
dc.description.references Sanguinetti, S., Henini, M., Grassi Alessi, M., Capizzi, M., Frigeri, P., & Franchi, S. (1999). Carrier thermal escape and retrapping in self-assembled quantum dots. Physical Review B, 60(11), 8276-8283. doi:10.1103/physrevb.60.8276 es_ES
dc.description.references Dawson, P., Rubel, O., Baranovskii, S. D., Pierz, K., Thomas, P., & Göbel, E. O. (2005). Temperature-dependent optical properties ofInAs∕GaAsquantum dots: Independent carrier versus exciton relaxation. Physical Review B, 72(23). doi:10.1103/physrevb.72.235301 es_ES
dc.description.references Smirnov, M. B., Talalaev, V. G., Novikov, B. V., Sarangov, S. V., Zakharov, N. D., Werner, P., … Cirlin, G. E. (2010). Temperature dependent luminescence from quantum dot arrays: phonon-assisted line broadening versus carrier escape-induced narrowing. physica status solidi (b), 247(2), 347-352. doi:10.1002/pssb.200945457 es_ES
dc.description.references Kobayashi, N. P., Ramachandran, T. R., Chen, P., & Madhukar, A. (1996). In situ, atomic force microscope studies of the evolution of InAs three‐dimensional islands on GaAs(001). Applied Physics Letters, 68(23), 3299-3301. doi:10.1063/1.116580 es_ES
dc.description.references Sales, D. L., Pizarro, J., Galindo, P. L., Garcia, R., Trevisi, G., Frigeri, P., … Molina, S. I. (2007). Critical strain region evaluation of self-assembled semiconductor quantum dots. Nanotechnology, 18(47), 475503. doi:10.1088/0957-4484/18/47/475503 es_ES
dc.description.references Abbarchi, M., Troiani, F., Mastrandrea, C., Goldoni, G., Kuroda, T., Mano, T., … Gurioli, M. (2008). Spectral diffusion and line broadening in single self-assembled GaAs∕AlGaAs quantum dot photoluminescence. Applied Physics Letters, 93(16), 162101. doi:10.1063/1.3003578 es_ES
dc.description.references Alonso-González, P., Alén, B., Fuster, D., González, Y., González, L., & Martínez-Pastor, J. (2007). Formation and optical characterization of single InAs quantum dots grown on GaAs nanoholes. Applied Physics Letters, 91(16), 163104. doi:10.1063/1.2799736 es_ES
dc.description.references Seravalli, L., Frigeri, P., Nasi, L., Trevisi, G., & Bocchi, C. (2010). Metamorphic quantum dots: Quite different nanostructures. Journal of Applied Physics, 108(6), 064324. doi:10.1063/1.3483249 es_ES
dc.description.references Le Ru, E. C., Fack, J., & Murray, R. (2003). Temperature and excitation density dependence of the photoluminescence from annealed InAs/GaAs quantum dots. Physical Review B, 67(24). doi:10.1103/physrevb.67.245318 es_ES
dc.description.references Mazzucato, S., Nardin, D., Capizzi, M., Polimeni, A., Frova, A., Seravalli, L., & Franchi, S. (2005). Defect passivation in strain engineered InAs/(InGa)As quantum dots. Materials Science and Engineering: C, 25(5-8), 830-834. doi:10.1016/j.msec.2005.06.025 es_ES
dc.description.references Popescu, D. P., Eliseev, P. G., Stintz, A., & Malloy, K. J. (2003). Temperature dependence of the photoluminescence emission from InAs quantum dots in a strained Ga0.85In0.15As quantum well. Semiconductor Science and Technology, 19(1), 33-38. doi:10.1088/0268-1242/19/1/005 es_ES
dc.description.references Colombo, D., Sanguinetti, S., Grilli, E., Guzzi, M., Martinelli, L., Gurioli, M., … Franchi, S. (2003). Efficient room temperature carrier trapping in quantum dots by tailoring the wetting layer. Journal of Applied Physics, 94(10), 6513-6517. doi:10.1063/1.1622775 es_ES
dc.description.references Ouerghui, W., Martinez-Pastor, J., Gomis, J., Melliti, A., Maaref, M. A., Granados, D., & Garcia, J. M. (2006). Effect of carrier transfer on the PL intensity in self-assembled In (Ga) As/GaAs quantum rings. The European Physical Journal Applied Physics, 35(3), 159-163. doi:10.1051/epjap:2006088 es_ES
dc.description.references Kong, L., Wu, Z., Feng, Z. C., & Ferguson, I. T. (2007). Photoluminescence characteristics of InAs self-assembled quantum dots in InGaAs∕GaAs quantum well. Journal of Applied Physics, 101(12), 126101. doi:10.1063/1.2745410 es_ES
dc.description.references Kong, L., Feng, Z. C., Wu, Z., & Lu, W. (2009). Temperature dependent and time-resolved photoluminescence studies of InAs self-assembled quantum dots with InGaAs strain reducing layer structure. Journal of Applied Physics, 106(1), 013512. doi:10.1063/1.3159648 es_ES
dc.description.references Gurioli, M., Vinattieri, A., Zamfirescu, M., Colocci, M., Sanguinetti, S., & Nötzel, R. (2006). Recombination kinetics of InAs quantum dots: Role of thermalization in dark states. Physical Review B, 73(8). doi:10.1103/physrevb.73.085302 es_ES
dc.description.references Harbord, E., Spencer, P., Clarke, E., & Murray, R. (2009). Radiative lifetimes in undoped andp-doped InAs/GaAs quantum dots. Physical Review B, 80(19). doi:10.1103/physrevb.80.195312 es_ES
dc.description.references Gomis, J., Martínez-Pastor, J., Alén, B., Granados, D., García, J. M., & Roussignol, P. (2006). Shape dependent electronic structure and exciton dynamics in small In(Ga)As quantum dots. The European Physical Journal B, 54(4), 471-477. doi:10.1140/epjb/e2007-00027-5 es_ES
dc.description.references Lin, C. H., Lin, H. S., Huang, C. C., Su, S. K., Lin, S. D., Sun, K. W., … Shen, J. L. (2009). Temperature dependence of time-resolved photoluminescence spectroscopy in InAs/GaAs quantum ring. Applied Physics Letters, 94(18), 183101. doi:10.1063/1.3130741 es_ES
dc.description.references Yang, B., Schneeloch, J. E., Pan, Z., Furis, M., & Achermann, M. (2010). Radiative lifetimes and orbital symmetry of electronic energy levels of CdS nanocrystals: Size dependence. Physical Review B, 81(7). doi:10.1103/physrevb.81.073401 es_ES
dc.description.references Murphy, S. T., Chroneos, A., Grimes, R. W., Jiang, C., & Schwingenschlögl, U. (2011). Phase stability and the arsenic vacancy defect in InxGa1−xAs. Physical Review B, 84(18). doi:10.1103/physrevb.84.184108 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem