- -

Short-time regularity assessment of fibrillatory waves from the surface ECG in atrial fibrillation

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Short-time regularity assessment of fibrillatory waves from the surface ECG in atrial fibrillation

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Alcaraz, Raul es_ES
dc.contributor.author Hornero, Fernando es_ES
dc.contributor.author Martinez, Arturo es_ES
dc.contributor.author Rieta, J J es_ES
dc.date.accessioned 2014-12-04T17:57:44Z
dc.date.available 2014-12-04T17:57:44Z
dc.date.issued 2012-06
dc.identifier.issn 0967-3334
dc.identifier.uri http://hdl.handle.net/10251/45191
dc.description.abstract This paper proposes the first non-invasive method for direct and short-time regularity quantification of atrial fibrillatory (f) waves from the surface ECG in atrial fibrillation (AF). Regularity is estimated by computing individual morphological variations among f waves, which are delineated and extracted from the atrial activity (AA) signal, making use of an adaptive signed correlation index. The algorithm was tested on real AF surface recordings in order to discriminate atrial signals with different organization degrees, providing a notably higher global accuracy (90.3%) than the two non-invasive AF organization estimates defined to date: the dominant atrial frequency (70.5%) and sample entropy (76.1%). Furthermore, due to its ability to assess AA regularity wave to wave, the proposed method is also able to pursue AF organization time course more precisely than the aforementioned indices. As a consequence, this work opens a new perspective in the non-invasive analysis of AF, such as the individualized study of each f wave, that could improve the understanding of AF mechanisms and become useful for its clinical treatment. es_ES
dc.description.sponsorship The authors are grateful to Drs Javier Vinas, Elio Martin and Alejandro Vazquez for their contribution to classify blindly the AF episodes used in this work. This work was supported by the projects TEC2010-20633 from the Spanish Ministry of Science and Innovation and PPII11-0194-8121 and PII1C09-0036-3237 from Junta de Comunidades de Castilla-La Mancha. en_EN
dc.language Inglés es_ES
dc.publisher IOP Publishing: Hybrid Open Access es_ES
dc.relation.ispartof Physiological Measurement es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Atrial fibrillation es_ES
dc.subject ECG es_ES
dc.subject Fibrillatory wave regularity es_ES
dc.subject Signal processing es_ES
dc.subject Waveform morphology es_ES
dc.subject.classification TECNOLOGIA ELECTRONICA es_ES
dc.title Short-time regularity assessment of fibrillatory waves from the surface ECG in atrial fibrillation es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1088/0967-3334/33/6/969
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//TEC2010-20633/ES/DESARROLLO Y APLICACION DE ESTIMADORES AVANZADOS DE ORGANIZACION PARA LA CLASIFICACION TERAPEUTICA Y EL SEGUIMIENTO DE PACIENTES CON FIBRILACION AURICULAR/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/Junta de Comunidades de Castilla-La Mancha//PII1C09-0036-3237/ES/Predicción De Riesgo De Muerte Súbita Tras Infarto De Miocardio Mediante Técnicas Avanzadas De Procesado Digital De Señal/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/Junta de Comunidades de Castilla-La Mancha//PPII11-0194-8121]/ES/PPII11-0194-8121]/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica es_ES
dc.contributor.affiliation Universitat Politècnica de València. Grupo de ingeniería en bioseñales e imagen radiológica es_ES
dc.description.bibliographicCitation Alcaraz, R.; Hornero, F.; Martinez, A.; Rieta, JJ. (2012). Short-time regularity assessment of fibrillatory waves from the surface ECG in atrial fibrillation. Physiological Measurement. 33(6):969-984. https://doi.org/10.1088/0967-3334/33/6/969 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1088/0967-3334/33/6/969 es_ES
dc.description.upvformatpinicio 969 es_ES
dc.description.upvformatpfin 984 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 33 es_ES
dc.description.issue 6 es_ES
dc.relation.senia 239033
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.description.references Alcaraz, R., Abásolo, D., Hornero, R., & Rieta, J. J. (2010). Optimal parameters study for sample entropy-based atrial fibrillation organization analysis. Computer Methods and Programs in Biomedicine, 99(1), 124-132. doi:10.1016/j.cmpb.2010.02.009 es_ES
dc.description.references Alcaraz, R., Hornero, F., & Rieta, J. J. (2010). Assessment of non-invasive time and frequency atrial fibrillation organization markers with unipolar atrial electrograms. Physiological Measurement, 32(1), 99-114. doi:10.1088/0967-3334/32/1/007 es_ES
dc.description.references Alcaraz, R., & Rieta, J. J. (2008). Adaptive singular value cancelation of ventricular activity in single-lead atrial fibrillation electrocardiograms. Physiological Measurement, 29(12), 1351-1369. doi:10.1088/0967-3334/29/12/001 es_ES
dc.description.references Alcaraz, R., & Rieta, J. J. (2010). A review on sample entropy applications for the non-invasive analysis of atrial fibrillation electrocardiograms. Biomedical Signal Processing and Control, 5(1), 1-14. doi:10.1016/j.bspc.2009.11.001 es_ES
dc.description.references Bollmann, A., Husser, D., Mainardi, L., Lombardi, F., Langley, P., Murray, A., … Sörnmo, L. (2006). Analysis of surface electrocardiograms in atrial fibrillation: techniques, research, and clinical applications. EP Europace, 8(11), 911-926. doi:10.1093/europace/eul113 es_ES
dc.description.references Bollmann, A. (1999). Non-invasive assessment of fibrillatory activity in patients with paroxysmal and persistent atrial fibrillation using the Holter ECG. Cardiovascular Research, 44(1), 60-66. doi:10.1016/s0008-6363(99)00156-x es_ES
dc.description.references Calcagnini, G., Censi, F., Michelucci, A., & Bartolini, P. (2006). Descriptors of wavefront propagation. IEEE Engineering in Medicine and Biology Magazine, 25(6), 71-78. doi:10.1109/emb-m.2006.250510 es_ES
dc.description.references Capucci, A., Biffi, M., Boriani, G., Ravelli, F., Nollo, G., Sabbatani, P., … Magnani, B. (1995). Dynamic Electrophysiological Behavior of Human Atria During Paroxysmal Atrial Fibrillation. Circulation, 92(5), 1193-1202. doi:10.1161/01.cir.92.5.1193 es_ES
dc.description.references CAPUCCI, A., RAVELLI, F., NOLLO, G., MONTENERO, A. S., BIEFL, M., & VILLANI, G. Q. (1999). Capture Window in Human Atrial Fibrillation. Journal of Cardiovascular Electrophysiology, 10(3), 319-327. doi:10.1111/j.1540-8167.1999.tb00678.x es_ES
dc.description.references Chen, W., Zhuang, J., Yu, W., & Wang, Z. (2009). Measuring complexity using FuzzyEn, ApEn, and SampEn. Medical Engineering & Physics, 31(1), 61-68. doi:10.1016/j.medengphy.2008.04.005 es_ES
dc.description.references Everett, T. H., Lai-Chow Kok, Vaughn, R. H., Moorman, R., & Haines, D. E. (2001). Frequency domain algorithm for quantifying atrial fibrillation organization to increase defibrillation efficacy. IEEE Transactions on Biomedical Engineering, 48(9), 969-978. doi:10.1109/10.942586 es_ES
dc.description.references Faes, L., Nollo, G., Antolini, R., Gaita, F., & Ravelli, F. (2002). A method for quantifying atrial fibrillation organization based on wave-morphology similarity. IEEE Transactions on Biomedical Engineering, 49(12), 1504-1513. doi:10.1109/tbme.2002.805472 es_ES
dc.description.references Fuster, V., Rydén, L. E., Cannom, D. S., Crijns, H. J., Curtis, A. B., … Ellenbogen, K. A. (2006). ACC/AHA/ESC 2006 Guidelines for the Management of Patients With Atrial Fibrillation. Circulation, 114(7). doi:10.1161/circulationaha.106.177292 es_ES
dc.description.references Fynn, S. P., Todd, D. M., Julian, W., Hobbs, C., Armstrong, K. L., Fitzpatrick, P., & Garratt, C. J. (2003). Effect of Amiodarone on Dispersion of Atrial Refractoriness and Cycle Length in Patients with Atrial Fibrillation. Journal of Cardiovascular Electrophysiology, 14(5), 485-491. doi:10.1046/j.1540-8167.2003.02388.x es_ES
dc.description.references Goyal, R., Harvey, M., Daoud, E. G., Brinkman, K., Knight, B. P., Bahu, M., … Morady, F. (1996). Effect of Coupling Interval and Pacing Cycle Length on Morphology of Paced Ventricular Complexes. Circulation, 94(11), 2843-2849. doi:10.1161/01.cir.94.11.2843 es_ES
dc.description.references Holm, M. (1998). Non-invasive assessment of the atrial cycle length during atrial fibrillation in man: introducing, validating and illustrating a new ECG method. Cardiovascular Research, 38(1), 69-81. doi:10.1016/s0008-6363(97)00289-7 es_ES
dc.description.references Hsu, N.-W., Lin, Y.-J., Tai, C.-T., Kao, T., Chang, S.-L., Wongcharoen, W., … Chen, S.-A. (2008). Frequency analysis of the fibrillatory activity from surface ECG lead V1 and intracardiac recordings: implications for mapping of AF. Europace, 10(4), 438-443. doi:10.1093/europace/eun045 es_ES
dc.description.references Jalife, J. (2002). Mother rotors and fibrillatory conduction: a mechanism of atrial fibrillation. Cardiovascular Research, 54(2), 204-216. doi:10.1016/s0008-6363(02)00223-7 es_ES
dc.description.references Konings, K. T., Kirchhof, C. J., Smeets, J. R., Wellens, H. J., Penn, O. C., & Allessie, M. A. (1994). High-density mapping of electrically induced atrial fibrillation in humans. Circulation, 89(4), 1665-1680. doi:10.1161/01.cir.89.4.1665 es_ES
dc.description.references Konings, K. T. S., Smeets, J. L. R. M., Penn, O. C., Wellens, H. J. J., & Allessie, M. A. (1997). Configuration of Unipolar Atrial Electrograms During Electrically Induced Atrial Fibrillation in Humans. Circulation, 95(5), 1231-1241. doi:10.1161/01.cir.95.5.1231 es_ES
dc.description.references Kupeev, K. Y. (1996). On significant maxima detection: a fine-to-coarse algorithm. Proceedings of 13th International Conference on Pattern Recognition. doi:10.1109/icpr.1996.546831 es_ES
dc.description.references Lian, J., Garner, G., Muessig, D., & Lang, V. (2010). A simple method to quantify the morphological similarity between signals. Signal Processing, 90(2), 684-688. doi:10.1016/j.sigpro.2009.07.010 es_ES
dc.description.references Maragos, P., & Schafer, R. (1987). Morphological filters--Part I: Their set-theoretic analysis and relations to linear shift-invariant filters. IEEE Transactions on Acoustics, Speech, and Signal Processing, 35(8), 1153-1169. doi:10.1109/tassp.1987.1165259 es_ES
dc.description.references Maragos, P., & Schafer, R. W. (1990). Morphological systems for multidimensional signal processing. Proceedings of the IEEE, 78(4), 690-710. doi:10.1109/5.54808 es_ES
dc.description.references Masè, M., Faes, L., Antolini, R., Scaglione, M., & Ravelli, F. (2005). Quantification of synchronization during atrial fibrillation by Shannon entropy: validation in patients and computer model of atrial arrhythmias. Physiological Measurement, 26(6), 911-923. doi:10.1088/0967-3334/26/6/003 es_ES
dc.description.references Matsuo, S., Lellouche, N., Wright, M., Bevilacqua, M., Knecht, S., Nault, I., … Haïssaguerre, M. (2009). Clinical Predictors of Termination and Clinical Outcome of Catheter Ablation for Persistent Atrial Fibrillation. Journal of the American College of Cardiology, 54(9), 788-795. doi:10.1016/j.jacc.2009.01.081 es_ES
dc.description.references NG, J., & GOLDBERGER, J. J. (2007). Understanding and Interpreting Dominant Frequency Analysis of AF Electrograms. Journal of Cardiovascular Electrophysiology, 18(6), 680-685. doi:10.1111/j.1540-8167.2007.00832.x es_ES
dc.description.references NG, J., KADISH, A. H., & GOLDBERGER, J. J. (2007). Technical Considerations for Dominant Frequency Analysis. Journal of Cardiovascular Electrophysiology, 18(7), 757-764. doi:10.1111/j.1540-8167.2007.00810.x es_ES
dc.description.references Nilsson, F., Stridh, M., Bollmann, A., & Sörnmo, L. (2006). Predicting spontaneous termination of atrial fibrillation using the surface ECG. Medical Engineering & Physics, 28(8), 802-808. doi:10.1016/j.medengphy.2005.11.010 es_ES
dc.description.references Nollo, G., Marconcini, M., Faes, L., Bovolo, F., Ravelli, F., & Bruzzone, L. (2008). An Automatic System for the Analysis and Classification of Human Atrial Fibrillation Patterns from Intracardiac Electrograms. IEEE Transactions on Biomedical Engineering, 55(9), 2275-2285. doi:10.1109/tbme.2008.923155 es_ES
dc.description.references Petrutiu, S., Ng, J., Nijm, G. M., Al-Angari, H., Swiryn, S., & Sahakian, A. V. (2006). Atrial fibrillation and waveform characterization. IEEE Engineering in Medicine and Biology Magazine, 25(6), 24-30. doi:10.1109/emb-m.2006.250505 es_ES
dc.description.references Richman, J. S., & Moorman, J. R. (2000). Physiological time-series analysis using approximate entropy and sample entropy. American Journal of Physiology-Heart and Circulatory Physiology, 278(6), H2039-H2049. doi:10.1152/ajpheart.2000.278.6.h2039 es_ES
dc.description.references Richter, U., Bollmann, A., Husser, D., & Stridh, M. (2009). Right atrial organization and wavefront analysis in atrial fibrillation. Medical & Biological Engineering & Computing, 47(12), 1237-1246. doi:10.1007/s11517-009-0540-2 es_ES
dc.description.references Rieta, J. J., Castells, F., Sanchez, C., Zarzoso, V., & Millet, J. (2004). Atrial Activity Extraction for Atrial Fibrillation Analysis Using Blind Source Separation. IEEE Transactions on Biomedical Engineering, 51(7), 1176-1186. doi:10.1109/tbme.2004.827272 es_ES
dc.description.references Serra, J., & Vincent, L. (1992). An overview of morphological filtering. Circuits Systems and Signal Processing, 11(1), 47-108. doi:10.1007/bf01189221 es_ES
dc.description.references Sih, H. J., Zipes, D. P., Berbari, E. J., & Olgin, J. E. (1999). A high-temporal resolution algorithm for quantifying organization during atrial fibrillation. IEEE Transactions on Biomedical Engineering, 46(4), 440-450. doi:10.1109/10.752941 es_ES
dc.description.references Stridh, M., & Sommo, L. (2001). Spatiotemporal QRST cancellation techniques for analysis of atrial fibrillation. IEEE Transactions on Biomedical Engineering, 48(1), 105-111. doi:10.1109/10.900266 es_ES
dc.description.references Stridh, M., Sornmo, L., Meurling, C. J., & Olsson, S. B. (2004). Sequential Characterization of Atrial Tachyarrhythmias Based on ECG Time-Frequency Analysis. IEEE Transactions on Biomedical Engineering, 51(1), 100-114. doi:10.1109/tbme.2003.820331 es_ES
dc.description.references Sun, P., Wu, Q. H., Weindling, A. M., Finkelstein, A., & Ibrahim, K. (2003). An improved morphological approach to background normalization of ECG signals. IEEE Transactions on Biomedical Engineering, 50(1), 117-121. doi:10.1109/tbme.2002.805486 es_ES
dc.description.references Sun, Y., Chan, K. L., & Krishnan, S. M. (2005). Characteristic wave detection in ECG signal using morphological transform. BMC Cardiovascular Disorders, 5(1). doi:10.1186/1471-2261-5-28 es_ES
dc.description.references SUNG, R. J., & LAUER, M. R. (2005). Atrial Fibrillation: Can We Cure It If We Can’t Explain It? Journal of Cardiovascular Electrophysiology, 16(5), 505-507. doi:10.1111/j.1540-8167.2005.50021.x es_ES
dc.description.references VILLANI, G. Q., NOLLO, G., RAVELLI, F., PIEPOLI, M., & CAPUCCI, A. (2002). Capture of Atrial Fibrillation Reduces the Atrial Defibrillation Threshold. Pacing and Clinical Electrophysiology, 25(8), 1159-1165. doi:10.1046/j.1460-9592.2002.01159.x es_ES
dc.description.references WELLS, J. L., KARP, R. B., KOUCHOUKOS, N. T., MACLEAN, W. A. H., JAMES, T. N., & WALDO, A. L. (1978). Characterization of Atrial Fibrillation in Man: Studies Following Open Heart Surgery*. Pacing and Clinical Electrophysiology, 1(4), 426-438. doi:10.1111/j.1540-8159.1978.tb03504.x es_ES
dc.description.references Zhang, F., & Lian, Y. (2009). QRS Detection Based on Multiscale Mathematical Morphology for Wearable ECG Devices in Body Area Networks. IEEE Transactions on Biomedical Circuits and Systems, 3(4), 220-228. doi:10.1109/tbcas.2009.2020093 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem