- -

Riparian evapotranspiration modelling: model description and implementation for predicting vegetation spatial distribution in semi-arid environments

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Riparian evapotranspiration modelling: model description and implementation for predicting vegetation spatial distribution in semi-arid environments

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author García-Arias, Alicia es_ES
dc.contributor.author Francés, F. es_ES
dc.contributor.author Morales de la Cruz, Marco Vinicio es_ES
dc.contributor.author Real Llanderal, Joaquín es_ES
dc.contributor.author Vallés Morán, F. J. es_ES
dc.contributor.author Garófano-Gómez, Virginia es_ES
dc.contributor.author Martinez-Capel, Francisco es_ES
dc.date.accessioned 2014-12-09T17:54:46Z
dc.date.available 2014-12-09T17:54:46Z
dc.date.issued 2014-04
dc.identifier.issn 1936-0584
dc.identifier.uri http://hdl.handle.net/10251/45265
dc.description.abstract Biotic and abiotic interactions between the riparian zone and the river determine relevant hydrological processes and exert control over riparian and bordering upland vegetation types. Vegetation growth and development are mainly controlled by water availability on semi-arid regions, where a moisture gradient determines the transition between the densely vegetated riparian zone and the semi-arid upland. To reproduce this spatial distribution, a mathematical model named RibAV is presented. Its conceptualization is based on the main ecohydrological modelling approaches and field expertise. The implementation of RibAV that is proposed in this paper allows the simulation of the distribution of three plant functional types [herbaceous riparian vegetation (HRV), woody riparian vegetation (WRV) and terrestrial vegetation (TV)] within the riparian zone. An evapotranspiration index (Eidx) obtained through RibAV is used as a criterion for plant absence/presence prediction. Two permanent river reaches of semi-arid Mediterranean basins, the Terde reach (Mijares River, Spain) and the Lorcha reach (Serpis River, Spain), have been selected as case studies for the calibration and validation of the model, respectively. Several criteria based on the confusion matrix were used to analyse the efficiency of RibAV on the prediction of plant distribution. The satisfactory performance of the model establishing the distribution of the riparian vegetation types and the limit between this zone and the bordering upland are demonstrated in this paper; the strength of the Eidx to classify plant functional types in riparian semi-arid environments is additionally proven es_ES
dc.description.sponsorship The authors would like to thank the Spanish Ministry of Environment and the Spanish Ministry of Economy and Competitiveness for their financial support through the research projects RIBERA (21.812-061/8511) and SCARCE (Consolider-Ingenio 2010 CSD2009-00065), respectively. In addition, the authors would like to thank the Hydrological Studies Centre (CEH-CEDEX), the Jucar River Basin Authority and the Spanish National Meteorological Agency (AEMET) for supplying the hydrological data, the aerial photographs and the meteorological data, respectively. en_EN
dc.language Inglés es_ES
dc.publisher Wiley es_ES
dc.relation.ispartof Ecohydrology es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Soil moisture es_ES
dc.subject Evapotranspiration modelling es_ES
dc.subject Riparian vegetation es_ES
dc.subject Spatial distribution es_ES
dc.subject Functional types es_ES
dc.subject.classification INGENIERIA HIDRAULICA es_ES
dc.subject.classification TECNOLOGIA DEL MEDIO AMBIENTE es_ES
dc.title Riparian evapotranspiration modelling: model description and implementation for predicting vegetation spatial distribution in semi-arid environments es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1002/eco.1387
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//CSD2009-00065/ES/Evaluación y predicción de los efectos del cambio global en la cantidad y la calidad del agua en ríos ibéricos/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Ingeniería del Agua y del Medio Ambiente - Institut Universitari d'Enginyeria de l'Aigua i Medi Ambient es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Investigación para la Gestión Integral de Zonas Costeras - Institut d'Investigació per a la Gestió Integral de Zones Costaneres es_ES
dc.description.bibliographicCitation García-Arias, A.; Francés, F.; Morales De La Cruz, MV.; Real Llanderal, J.; Vallés Morán, FJ.; Garófano-Gómez, V.; Martinez-Capel, F. (2014). Riparian evapotranspiration modelling: model description and implementation for predicting vegetation spatial distribution in semi-arid environments. Ecohydrology. 7(2):659-677. doi:10.1002/eco.1387 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1002/eco.1387 es_ES
dc.description.upvformatpinicio 659 es_ES
dc.description.upvformatpfin 677 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 7 es_ES
dc.description.issue 2 es_ES
dc.relation.senia 265483
dc.contributor.funder Ministerio de Economía y Competitividad
dc.contributor.funder Ministerio de Medio Ambiente y Medio Rural y Marino
dc.description.references AGUIAR, F. C., & FERREIRA, M. T. (2005). Human-disturbed landscapes: effects on composition and integrity of riparian woody vegetation in the Tagus River basin, Portugal. Environmental Conservation, 32(1), 30-41. doi:10.1017/s0376892905001992 es_ES
dc.description.references Allen RG Pereira LS Raes D Smith M 1998 Crop evapotranspiration - guidelines for computing crop water requirements es_ES
dc.description.references Altier LS Lowrance R Williams RG Inamdar SP Bosch DD Sheridan JM Hubbard RK Thomas DL 2002 Riparian ecosystem management model: simulator for ecological processes in riparian zones es_ES
dc.description.references Amenu, G. G., & Kumar, P. (2008). A model for hydraulic redistribution incorporating coupled soil-root moisture transport. Hydrology and Earth System Sciences, 12(1), 55-74. doi:10.5194/hess-12-55-2008 es_ES
dc.description.references Azami, K., Suzuki, H., & Toki, S. (2004). Changes in riparian vegetation communities below a large dam in a monsoonal region: Futase Dam, Japan. River Research and Applications, 20(5), 549-563. doi:10.1002/rra.763 es_ES
dc.description.references Baird, K. J., & Maddock, T. (2005). Simulating riparian evapotranspiration: a new methodology and application for groundwater models. Journal of Hydrology, 312(1-4), 176-190. doi:10.1016/j.jhydrol.2005.02.014 es_ES
dc.description.references Bendix, J. (1994). Scale, Direction, and Pattern in Riparian Vegetation-Environment Relationships. Annals of the Association of American Geographers, 84(4), 652-665. doi:10.1111/j.1467-8306.1994.tb01881.x es_ES
dc.description.references Benjankar, R., Egger, G., Jorde, K., Goodwin, P., & Glenn, N. F. (2011). Dynamic floodplain vegetation model development for the Kootenai River, USA. Journal of Environmental Management, 92(12), 3058-3070. doi:10.1016/j.jenvman.2011.07.017 es_ES
dc.description.references Brinson, M. M., & Verhoeven, J. (1999). Riparian forests. Maintaining Biodiversity in Forest Ecosystems, 265-299. doi:10.1017/cbo9780511613029.010 es_ES
dc.description.references Brookes, C. ., Hooke, J. ., & Mant, J. (2000). Modelling vegetation interactions with channel flow in river valleys of the Mediterranean region. CATENA, 40(1), 93-118. doi:10.1016/s0341-8162(99)00065-x es_ES
dc.description.references Brouwer C Goffeau A Heibloem M 1985 Irrigation Water Management: Training Manual No. 1-Introduction to Irrigation http://www.fao.org/docrep/R4082E/R4082E00.htm es_ES
dc.description.references Butler, J. J., Kluitenberg, G. J., Whittemore, D. O., Loheide, S. P., Jin, W., Billinger, M. A., & Zhan, X. (2007). A field investigation of phreatophyte-induced fluctuations in the water table. Water Resources Research, 43(2). doi:10.1029/2005wr004627 es_ES
dc.description.references CAMPBELL, G. S. (1974). A SIMPLE METHOD FOR DETERMINING UNSATURATED CONDUCTIVITY FROM MOISTURE RETENTION DATA. Soil Science, 117(6), 311-314. doi:10.1097/00010694-197406000-00001 es_ES
dc.description.references Canadell, J., Jackson, R. B., Ehleringer, J. B., Mooney, H. A., Sala, O. E., & Schulze, E.-D. (1996). Maximum rooting depth of vegetation types at the global scale. Oecologia, 108(4), 583-595. doi:10.1007/bf00329030 es_ES
dc.description.references Choi, S.-U., Yoon, B., & Woo, H. (2005). Effects of dam-induced flow regime change on downstream river morphology and vegetation cover in the Hwang River, Korea. River Research and Applications, 21(2-3), 315-325. doi:10.1002/rra.849 es_ES
dc.description.references Cohen, J. (1960). A Coefficient of Agreement for Nominal Scales. Educational and Psychological Measurement, 20(1), 37-46. doi:10.1177/001316446002000104 es_ES
dc.description.references Cohen, J. (1968). Weighted kappa: Nominal scale agreement provision for scaled disagreement or partial credit. Psychological Bulletin, 70(4), 213-220. doi:10.1037/h0026256 es_ES
dc.description.references Cooper, A., Shine, T., McCann, T., & Tidane, D. A. (2006). An ecological basis for sustainable land use of Eastern Mauritanian wetlands. Journal of Arid Environments, 67(1), 116-141. doi:10.1016/j.jaridenv.2006.02.003 es_ES
dc.description.references DAHM, C. N., CLEVERLY, J. R., ALLRED COONROD, J. E., THIBAULT, J. R., MCDONNELL, D. E., & GILROY, D. J. (2002). Evapotranspiration at the land/water interface in a semi-arid drainage basin. Freshwater Biology, 47(4), 831-843. doi:10.1046/j.1365-2427.2002.00917.x es_ES
dc.description.references David, T. S., Henriques, M. O., Kurz-Besson, C., Nunes, J., Valente, F., Vaz, M., … David, J. S. (2007). Water-use strategies in two co-occurring Mediterranean evergreen oaks: surviving the summer drought. Tree Physiology, 27(6), 793-803. doi:10.1093/treephys/27.6.793 es_ES
dc.description.references Eagleson, P. S. (2002). Ecohydrology. doi:10.1017/cbo9780511535680 es_ES
dc.description.references Glenn, E. P., Neale, C. M. U., Hunsaker, D. J., & Nagler, P. L. (2011). Vegetation index-based crop coefficients to estimate evapotranspiration by remote sensing in agricultural and natural ecosystems. Hydrological Processes, 25(26), 4050-4062. doi:10.1002/hyp.8392 es_ES
dc.description.references Glenz C 2005 Process-based, spatially-explicit modelling of riparian forest dynamics in Central Europe - tool for decision making in river restoration 10.5075/epfl-thesis-3223 es_ES
dc.description.references González, E., González-Sanchis, M., Comín, F. A., & Muller, E. (2010). Hydrologic thresholds for riparian forest conservation in a regulated large Mediterranean river. River Research and Applications, 28(1), 71-80. doi:10.1002/rra.1436 es_ES
dc.description.references Goodrich, D. (2000). Seasonal estimates of riparian evapotranspiration using remote and in situ measurements. Agricultural and Forest Meteorology, 105(1-3), 281-309. doi:10.1016/s0168-1923(00)00197-0 es_ES
dc.description.references Horton, J. L., & Clark, J. L. (2001). Water table decline alters growth and survival of Salix gooddingii and Tamarix chinensis seedlings. Forest Ecology and Management, 140(2-3), 239-247. doi:10.1016/s0378-1127(00)00314-5 es_ES
dc.description.references Horton, J. L., Kolb, T. E., & Hart, S. C. (2001). Responses of riparian trees to interannual variation in ground water depth in a semi-arid river basin. Plant, Cell and Environment, 24(3), 293-304. doi:10.1046/j.1365-3040.2001.00681.x es_ES
dc.description.references Hupp, C. R., & Osterkamp, W. R. (1985). Bottomland Vegetation Distribution along Passage Creek, Virginia, in Relation to Fluvial Landforms. Ecology, 66(3), 670-681. doi:10.2307/1940528 es_ES
dc.description.references Hupp, C. R., & Osterkamp, W. R. (1996). Riparian vegetation and fluvial geomorphic processes. Geomorphology, 14(4), 277-295. doi:10.1016/0169-555x(95)00042-4 es_ES
dc.description.references S. P. Inamdar, J. M. Sheridan, R. G. Williams, D. D. Bosch, R. R. Lowrance, L. S. Altier, & D. L. Thomas. (1999). RIPARIAN ECOSYSTEM MANAGEMENT MODEL (REMM): I. TESTING OF THE HYDROLOGIC COMPONENT FOR A COASTAL PLAIN RIPARIAN SYSTEM. Transactions of the ASAE, 42(6), 1679-1690. doi:10.13031/2013.13332 es_ES
dc.description.references Kellman, M., & Roulet, N. (1990). Nutrient Flux and Retention in a Tropical Sand-Dune Succession. The Journal of Ecology, 78(3), 664. doi:10.2307/2260891 es_ES
dc.description.references Laio, F., Porporato, A., Ridolfi, L., & Rodriguez-Iturbe, I. (2001). Plants in water-controlled ecosystems: active role in hydrologic processes and response to water stress. Advances in Water Resources, 24(7), 707-723. doi:10.1016/s0309-1708(01)00005-7 es_ES
dc.description.references Lambers, H., Chapin, F. S., & Pons, T. L. (1998). Plant Physiological Ecology. doi:10.1007/978-1-4757-2855-2 es_ES
dc.description.references Lambs, L. (2004). Interactions between groundwater and surface water at river banks and the confluence of rivers. Journal of Hydrology, 288(3-4), 312-326. doi:10.1016/j.jhydrol.2003.10.013 es_ES
dc.description.references Lamontagne, S., Cook, P. G., O’Grady, A., & Eamus, D. (2005). Groundwater use by vegetation in a tropical savanna riparian zone (Daly River, Australia). Journal of Hydrology, 310(1-4), 280-293. doi:10.1016/j.jhydrol.2005.01.009 es_ES
dc.description.references Larcher, W. (2003). Physiological Plant Ecology. doi:10.1007/978-3-662-05214-3 es_ES
dc.description.references Lautz, L. K. (2007). Estimating groundwater evapotranspiration rates using diurnal water-table fluctuations in a semi-arid riparian zone. Hydrogeology Journal, 16(3), 483-497. doi:10.1007/s10040-007-0239-0 es_ES
dc.description.references Lavorel, S., McIntyre, S., Landsberg, J., & Forbes, T. D. A. (1997). Plant functional classifications: from general groups to specific groups based on response to disturbance. Trends in Ecology & Evolution, 12(12), 474-478. doi:10.1016/s0169-5347(97)01219-6 es_ES
dc.description.references Lee, J.-E., Oliveira, R. S., Dawson, T. E., & Fung, I. (2005). Root functioning modifies seasonal climate. Proceedings of the National Academy of Sciences, 102(49), 17576-17581. doi:10.1073/pnas.0508785102 es_ES
dc.description.references Lite, S. J., & Stromberg, J. C. (2005). Surface water and ground-water thresholds for maintaining Populus–Salix forests, San Pedro River, Arizona. Biological Conservation, 125(2), 153-167. doi:10.1016/j.biocon.2005.01.020 es_ES
dc.description.references Lite, S. J., Bagstad, K. J., & Stromberg, J. C. (2005). Riparian plant species richness along lateral and longitudinal gradients of water stress and flood disturbance, San Pedro River, Arizona, USA. Journal of Arid Environments, 63(4), 785-813. doi:10.1016/j.jaridenv.2005.03.026 es_ES
dc.description.references Lowrance R Altier L Williams R Inambar S Bosch D Sheridan J Thomas D Hubbard R 1998 The riparian ecosystem management model: simulator for ecological processes in buffer systems 81 88 es_ES
dc.description.references Mac Nish, R. (2000). Comparison of riparian evapotranspiration estimates based on a water balance approach and sap flow measurements. Agricultural and Forest Meteorology, 105(1-3), 271-279. doi:10.1016/s0168-1923(00)00196-9 es_ES
dc.description.references Malanson, G. P. (1993). Riparian Landscapes. doi:10.1017/cbo9780511565434 es_ES
dc.description.references Manel, S., Williams, H. C., & Ormerod, S. J. (2002). Evaluating presence-absence models in ecology: the need to account for prevalence. Journal of Applied Ecology, 38(5), 921-931. doi:10.1046/j.1365-2664.2001.00647.x es_ES
dc.description.references MERRITT, D. M., SCOTT, M. L., LeROY POFF, N., AUBLE, G. T., & LYTLE, D. A. (2010). Theory, methods and tools for determining environmental flows for riparian vegetation: riparian vegetation-flow response guilds. Freshwater Biology, 55(1), 206-225. doi:10.1111/j.1365-2427.2009.02206.x es_ES
dc.description.references Mouton, A. M., De Baets, B., & Goethals, P. L. M. (2010). Ecological relevance of performance criteria for species distribution models. Ecological Modelling, 221(16), 1995-2002. doi:10.1016/j.ecolmodel.2010.04.017 es_ES
dc.description.references Murillo J Rodríguez Pallarés M Andrés-Urrutia A Brufau P García-Navarro P 2008 A mathematical model for numerical simulation of shallow water flow: description and practical application of GUAD 2D 978-84-7653-074-0 es_ES
dc.description.references Nagler, P. (2011). The role of remote sensing observations and models in hydrology: the science of evapotranspiration. Hydrological Processes, 25(26), 3977-3978. doi:10.1002/hyp.8436 es_ES
dc.description.references Ocampo, C. J., Sivapalan, M., & Oldham, C. (2006). Hydrological connectivity of upland-riparian zones in agricultural catchments: Implications for runoff generation and nitrate transport. Journal of Hydrology, 331(3-4), 643-658. doi:10.1016/j.jhydrol.2006.06.010 es_ES
dc.description.references Perona, P., Molnar, P., Savina, M., & Burlando, P. (2009). An observation-based stochastic model for sediment and vegetation dynamics in the floodplain of an Alpine braided river. Water Resources Research, 45(9). doi:10.1029/2008wr007550 es_ES
dc.description.references Porporato, A., Laio, F., Ridolfi, L., & Rodriguez-Iturbe, I. (2001). Plants in water-controlled ecosystems: active role in hydrologic processes and response to water stress. Advances in Water Resources, 24(7), 725-744. doi:10.1016/s0309-1708(01)00006-9 es_ES
dc.description.references Quevedo, D. I., & Francés, F. (2008). A conceptual dynamic vegetation-soil model for arid and semiarid zones. Hydrology and Earth System Sciences, 12(5), 1175-1187. doi:10.5194/hess-12-1175-2008 es_ES
dc.description.references Richards, L. A. (1931). CAPILLARY CONDUCTION OF LIQUIDS THROUGH POROUS MEDIUMS. Physics, 1(5), 318-333. doi:10.1063/1.1745010 es_ES
dc.description.references RICHARDS, K., BRASINGTON, J., & HUGHES, F. (2002). Geomorphic dynamics of floodplains: ecological implications and a potential modelling strategy. Freshwater Biology, 47(4), 559-579. doi:10.1046/j.1365-2427.2002.00920.x es_ES
dc.description.references Rodriguez-Iturbe, I., Porporato, A., Laio, F., & Ridolfi, L. (2001). Plants in water-controlled ecosystems: active role in hydrologic processes and response to water stress. Advances in Water Resources, 24(7), 695-705. doi:10.1016/s0309-1708(01)00004-5 es_ES
dc.description.references Ryel, R., Caldwell, M., Yoder, C., Or, D., & Leffler, A. (2002). Hydraulic redistribution in a stand of Artemisia tridentata: evaluation of benefits to transpiration assessed with a simulation model. Oecologia, 130(2), 173-184. doi:10.1007/s004420100794 es_ES
dc.description.references SALINAS, M. J., BLANCA, G., & ROMERO, A. T. (2000). Evaluating riparian vegetation in semi-arid Mediterranean watercourses in the south-eastern Iberian Peninsula. Environmental Conservation, 27(1), 24-35. doi:10.1017/s0376892900000047 es_ES
dc.description.references Saxton, K. E., & Rawls, W. J. (2006). Soil Water Characteristic Estimates by Texture and Organic Matter for Hydrologic Solutions. Soil Science Society of America Journal, 70(5), 1569. doi:10.2136/sssaj2005.0117 es_ES
dc.description.references Schaeffer SM Williams DG 1998 Transpiration of desert riparian forest canopies estimated from sap flux es_ES
dc.description.references Schenk, H. J., & Jackson, R. B. (2002). Rooting depths, lateral root spreads and below-ground/above-ground allometries of plants in water-limited ecosystems. Journal of Ecology, 90(3), 480-494. doi:10.1046/j.1365-2745.2002.00682.x es_ES
dc.description.references Schenk, H. J., & Jackson, R. B. (2005). Mapping the global distribution of deep roots in relation to climate and soil characteristics. Geoderma, 126(1-2), 129-140. doi:10.1016/j.geoderma.2004.11.018 es_ES
dc.description.references Schilling, K. E., & Kiniry, J. R. (2007). Estimation of evapotranspiration by reed canarygrass using field observations and model simulations. Journal of Hydrology, 337(3-4), 356-363. doi:10.1016/j.jhydrol.2007.02.003 es_ES
dc.description.references Schulze, E.-D., Mooney, H. A., Sala, O. E., Jobbagy, E., Buchmann, N., Bauer, G., … Ehleringer, J. R. (1996). Rooting depth, water availability, and vegetation cover along an aridity gradient in Patagonia. Oecologia, 108(3), 503-511. doi:10.1007/bf00333727 es_ES
dc.description.references Scott RL Goodrich DC Levick LR 2003 A GIS-based management tool to quantify riparian vegetation groundwater use 222 227 es_ES
dc.description.references SCOTT, R. L., HUXMAN, T. E., WILLIAMS, D. G., & GOODRICH, D. C. (2006). Ecohydrological impacts of woody-plant encroachment: seasonal patterns of water and carbon dioxide exchange within a semiarid riparian environment. Global Change Biology, 12(2), 311-324. doi:10.1111/j.1365-2486.2005.01093.x es_ES
dc.description.references Scott, R. (2000). The water use of two dominant vegetation communities in a semiarid riparian ecosystem. Agricultural and Forest Meteorology, 105(1-3), 241-256. doi:10.1016/s0168-1923(00)00181-7 es_ES
dc.description.references Serrat-Capdevila, A., Scott, R. L., James Shuttleworth, W., & Valdés, J. B. (2011). Estimating evapotranspiration under warmer climates: Insights from a semi-arid riparian system. Journal of Hydrology, 399(1-2), 1-11. doi:10.1016/j.jhydrol.2010.12.021 es_ES
dc.description.references Snyder, K. (2000). Water sources used by riparian trees varies among stream types on the San Pedro River, Arizona. Agricultural and Forest Meteorology, 105(1-3), 227-240. doi:10.1016/s0168-1923(00)00193-3 es_ES
dc.description.references Sparks, R. E. (1995). Need for Ecosystem Management of Large Rivers and Their Floodplains. BioScience, 45(3), 168-182. doi:10.2307/1312556 es_ES
dc.description.references Sparovek, G., Beatriz Lima Ranieri, S., Gassner, A., Clerice De Maria, I., Schnug, E., Ferreira dos Santos, R., & Joubert, A. (2002). A conceptual framework for the definition of the optimal width of riparian forests. Agriculture, Ecosystems & Environment, 90(2), 169-175. doi:10.1016/s0167-8809(01)00195-5 es_ES
dc.description.references Stave, J., Oba, G., Stenseth, N. C., & Nordal, I. (2005). Environmental gradients in the Turkwel riverine forest, Kenya: Hypotheses on dam-induced vegetation change. Forest Ecology and Management, 212(1-3), 184-198. doi:10.1016/j.foreco.2005.03.037 es_ES
dc.description.references Stromberg, J. C. (2001). Restoration of riparian vegetation in the south-western United States: importance of flow regimes and fluvial dynamism. Journal of Arid Environments, 49(1), 17-34. doi:10.1006/jare.2001.0833 es_ES
dc.description.references Stromberg, J. C., Tiller, R., & Richter, B. (1996). Effects of Groundwater Decline on Riparian Vegetation of Semiarid Regions: The San Pedro, Arizona. Ecological Applications, 6(1), 113-131. doi:10.2307/2269558 es_ES
dc.description.references Stromberg, J. C., Wilkins, S. D., & Tress, J. A. (1993). Vegetation-Hydrology Models: Implications for Management of Prosopis Velutina (Velvet Mesquite) Riparian Ecosystems. Ecological Applications, 3(2), 307-314. doi:10.2307/1941833 es_ES
dc.description.references Tabacchi, E., Lambs, L., Guilloy, H., Planty-Tabacchi, A.-M., Muller, E., & D�camps, H. (2000). Impacts of riparian vegetation on hydrological processes. Hydrological Processes, 14(16-17), 2959-2976. doi:10.1002/1099-1085(200011/12)14:16/17<2959::aid-hyp129>3.0.co;2-b es_ES
dc.description.references Tabacchi, E., Planty-Tabacchi, A.-M., Roques, L., & Nadal, E. (2005). Seed inputs in riparian zones: implications for plant invasion. River Research and Applications, 21(2-3), 299-313. doi:10.1002/rra.848 es_ES
dc.description.references Vidon, P. G. F., & Hill, A. R. (2004). Landscape controls on the hydrology of stream riparian zones. Journal of Hydrology, 292(1-4), 210-228. doi:10.1016/j.jhydrol.2004.01.005 es_ES
dc.description.references Webb, R. H., & Leake, S. A. (2006). Ground-water surface-water interactions and long-term change in riverine riparian vegetation in the southwestern United States. Journal of Hydrology, 320(3-4), 302-323. doi:10.1016/j.jhydrol.2005.07.022 es_ES
dc.description.references Wild A 1992 Condiciones del suelo y desarrollo de las plantas según Russell es_ES
dc.description.references Zheng, Z., & Wang, G. (2007). Modeling the dynamic root water uptake and its hydrological impact at the Reserva Jaru site in Amazonia. Journal of Geophysical Research: Biogeosciences, 112(G4), n/a-n/a. doi:10.1029/2007jg000413 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem