- -

Zeolite Rho: a highly selective adsorbent for CO2/CH4 separation induced by a structural phase modification

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Zeolite Rho: a highly selective adsorbent for CO2/CH4 separation induced by a structural phase modification

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Palomino Roca, Miguel es_ES
dc.contributor.author Corma Canós, Avelino es_ES
dc.contributor.author Jorda Moret, Jose Luis es_ES
dc.contributor.author Rey Garcia, Fernando es_ES
dc.contributor.author Valencia Valencia, Susana es_ES
dc.date.accessioned 2015-01-12T07:48:31Z
dc.date.available 2015-01-12T07:48:31Z
dc.date.issued 2012
dc.identifier.issn 1359-7345
dc.identifier.uri http://hdl.handle.net/10251/45946
dc.description.abstract [EN] Zeolite Rho is able to successfully separate CO2 from CH4 with the highest selectivity ever observed on the basis of pore diameter and surface polarity. The adsorption of CO2 provokes structural changes in the zeolite Rho. es_ES
dc.description.sponsorship We acknowledge financial support from Spanish CICYT (MAT2009-14528-C02-01, CTQ2010-17988/PPQ) and European Project TopCombi (NMP2-CT2005-515792). M.P. thanks CSIC for a JAE doctoral fellowship. The authors thank the referee for the suggestion to carry out structural studies.
dc.language Inglés es_ES
dc.publisher Royal Society of Chemistry es_ES
dc.relation.ispartof Chemical Communications es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject All-Silica-DD3R es_ES
dc.subject Carbon dioxide es_ES
dc.subject Adsorptiun equilibrium es_ES
dc.subject Imidazolate frameworks es_ES
dc.subject High-Pressores es_ES
dc.subject Mordenite es_ES
dc.subject Methane es_ES
dc.subject Parafins es_ES
dc.subject Membrane es_ES
dc.subject Nitrogen es_ES
dc.subject.classification QUIMICA ORGANICA es_ES
dc.title Zeolite Rho: a highly selective adsorbent for CO2/CH4 separation induced by a structural phase modification es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1039/C1CC16320E
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//MAT2009-14528-C02-01/ES/Sintesis, Caracterizacion Avanzada Y Empleo En Procesos Industriales De Nuevas Zeolitas Obtenidos Con Cationes Organicos No Convencionales Como Agentes Directores De Estructura/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/FP6/515792/EU/Towards optimised chemical processes and new materials discovery by combinatorial science/TOPCOMBI/
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//CTQ2010-17988/ES/CATALIZADORES AVANZADOS PARA LA CONVERSION DE GAS DE SINTESIS EN COMBUSTIBLES/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.description.bibliographicCitation Palomino Roca, M.; Corma Canós, A.; Jorda Moret, JL.; Rey Garcia, F.; Valencia Valencia, S. (2012). Zeolite Rho: a highly selective adsorbent for CO2/CH4 separation induced by a structural phase modification. Chemical Communications. 48(2):215-217. doi:10.1039/C1CC16320E es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1039/c1cc16320e es_ES
dc.description.upvformatpinicio 215 es_ES
dc.description.upvformatpfin 217 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 48 es_ES
dc.description.issue 2 es_ES
dc.relation.senia 206095
dc.contributor.funder European Commission
dc.contributor.funder Ministerio de Ciencia e Innovación
dc.description.references Ruthven, D. M., & Reyes, S. C. (2007). Adsorptive separation of light olefins from paraffins. Microporous and Mesoporous Materials, 104(1-3), 59-66. doi:10.1016/j.micromeso.2007.01.005 es_ES
dc.description.references Jiang, J., Yu, J., & Corma, A. (2010). Extra-Large-Pore Zeolites: Bridging the Gap between Micro and Mesoporous Structures. Angewandte Chemie International Edition, 49(18), 3120-3145. doi:10.1002/anie.200904016 es_ES
dc.description.references R. T. Yang , Adsorbents: Fundamentals and Applications, John Wiley and Sons, Hoboken, New Jersey, 2003, p. 157 es_ES
dc.description.references S. Sircar and A. L.Myers, Gas separation by zeolites, in Handbook of Zeolite Science and Technology, ed. S. M. Auerbach, K. A. Carrado and P. K. Dutta, 2003, p. 1063 es_ES
dc.description.references R. M. Barrer , Zeolites and Clay Minerals as Sorbents and Molecular Sieves, Academic Press, London, 1978 es_ES
dc.description.references Corma, A., Rey, F., Rius, J., Sabater, M. J., & Valencia, S. (2004). Supramolecular self-assembled molecules as organic directing agent for synthesis of zeolites. Nature, 431(7006), 287-290. doi:10.1038/nature02909 es_ES
dc.description.references Olson, D. H., Camblor, M. A., Villaescusa, L. A., & Kuehl, G. H. (2004). Light hydrocarbon sorption properties of pure silica Si-CHA and ITQ-3 and high silica ZSM-58. Microporous and Mesoporous Materials, 67(1), 27-33. doi:10.1016/j.micromeso.2003.09.025 es_ES
dc.description.references Zhu, W., Kapteijn, F., & Moulijn, J. A. (1999). Shape selectivity in the adsorption of propane/propene on the all-silica DD3R. Chemical Communications, (24), 2453-2454. doi:10.1039/a906465f es_ES
dc.description.references Palomino, M., Cantín, A., Corma, A., Leiva, S., Rey, F., & Valencia, S. (2007). Pure silica ITQ-32 zeolite allows separation of linear olefins from paraffins. Chem. Commun., (12), 1233-1235. doi:10.1039/b700358g es_ES
dc.description.references Tijsebaert, B., Varszegi, C., Gies, H., Xiao, F.-S., Bao, X., Tatsumi, T., … De Vos, D. (2008). Liquid phase separation of 1-butene from 2-butenes on all-silica zeolite RUB-41. Chemical Communications, (21), 2480. doi:10.1039/b719463c es_ES
dc.description.references Olson, D. H., Yang, X., & Camblor, M. A. (2004). ITQ-12:  A Zeolite Having Temperature Dependent Adsorption Selectivity and Potential for Propene Separation. The Journal of Physical Chemistry B, 108(30), 11044-11048. doi:10.1021/jp040216d es_ES
dc.description.references Denayer, J. F., Souverijns, W., Jacobs, P. A., Martens, J. A., & Baron, G. V. (1998). High-Temperature Low-Pressure Adsorption of Branched C5−C8Alkanes on Zeolite Beta, ZSM-5, ZSM-22, Zeolite Y, and Mordenite. The Journal of Physical Chemistry B, 102(23), 4588-4597. doi:10.1021/jp980674k es_ES
dc.description.references Amrouche, H., Aguado, S., Pérez-Pellitero, J., Chizallet, C., Siperstein, F., Farrusseng, D., … Nieto-Draghi, C. (2011). Experimental and Computational Study of Functionality Impact on Sodalite–Zeolitic Imidazolate Frameworks for CO2Separation. The Journal of Physical Chemistry C, 115(33), 16425-16432. doi:10.1021/jp202804g es_ES
dc.description.references Wang, B., Côté, A. P., Furukawa, H., O’Keeffe, M., & Yaghi, O. M. (2008). Colossal cages in zeolitic imidazolate frameworks as selective carbon dioxide reservoirs. Nature, 453(7192), 207-211. doi:10.1038/nature06900 es_ES
dc.description.references Serra-Crespo, P., Ramos-Fernandez, E. V., Gascon, J., & Kapteijn, F. (2011). Synthesis and Characterization of an Amino Functionalized MIL-101(Al): Separation and Catalytic Properties. Chemistry of Materials, 23(10), 2565-2572. doi:10.1021/cm103644b es_ES
dc.description.references Tagliabue, M., Farrusseng, D., Valencia, S., Aguado, S., Ravon, U., Rizzo, C., … Mirodatos, C. (2009). Natural gas treating by selective adsorption: Material science and chemical engineering interplay. Chemical Engineering Journal, 155(3), 553-566. doi:10.1016/j.cej.2009.09.010 es_ES
dc.description.references P. A. Barrett and N. A.Stephenson, in Zeolites and Ordered Porous Solids: Fundamentals and Applications, ed. C. Martínez and J. Pérez-Pariente, Editorial Universitat Politècnica de València, Valencia, 2011, p. 149 es_ES
dc.description.references Bonenfant, D., Kharoune, M., Niquette, P., Mimeault, M., & Hausler, R. (2008). Advances in principal factors influencing carbon dioxide adsorption on zeolites. Science and Technology of Advanced Materials, 9(1), 013007. doi:10.1088/1468-6996/9/1/013007 es_ES
dc.description.references Dunne, J. A., Rao, M., Sircar, S., Gorte, R. J., & Myers, A. L. (1996). Calorimetric Heats of Adsorption and Adsorption Isotherms. 2. O2, N2, Ar, CO2, CH4, C2H6, and SF6on NaX, H-ZSM-5, and Na-ZSM-5 Zeolites. Langmuir, 12(24), 5896-5904. doi:10.1021/la960496r es_ES
dc.description.references Delgado, J. A., Uguina, M. A., Gómez, J. M., & Ortega, L. (2006). Adsorption equilibrium of carbon dioxide, methane and nitrogen onto Na- and H-mordenite at high pressures. Separation and Purification Technology, 48(3), 223-228. doi:10.1016/j.seppur.2005.07.027 es_ES
dc.description.references Vansant, E. F., & Voets, R. (1981). Adsorption of binary gas mixtures in ion-exchanged forms of mordenite. Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, 77(6), 1371. doi:10.1039/f19817701371 es_ES
dc.description.references Llewellyn, P. L., & Maurin, G. (2007). Gas Adsorption in Zeolites and Related Materials. Introduction to Zeolite Science and Practice, 555-XVI. doi:10.1016/s0167-2991(07)80805-6 es_ES
dc.description.references Venna, S. R., & Carreon, M. A. (2008). Synthesis of SAPO-34 Crystals in the Presence of Crystal Growth Inhibitors. The Journal of Physical Chemistry B, 112(51), 16261-16265. doi:10.1021/jp809316s es_ES
dc.description.references Palomino, M., Corma, A., Rey, F., & Valencia, S. (2010). New Insights on CO2−Methane Separation Using LTA Zeolites with Different Si/Al Ratios and a First Comparison with MOFs. Langmuir, 26(3), 1910-1917. doi:10.1021/la9026656 es_ES
dc.description.references Moon, J.-H., Bae, Y.-S., Hyun, S.-H., & Lee, C.-H. (2006). Equilibrium and kinetic characteristics of five single gases in a methyltriethoxysilane-templating silica/α-alumina composite membrane. Journal of Membrane Science, 285(1-2), 343-352. doi:10.1016/j.memsci.2006.09.003 es_ES
dc.description.references ROBSON, H. E., SHOEMAKER, D. P., OGILVIE, R. A., & MANOR, P. C. (1973). Synthesis and Crystal Structure of Zeolite Rho—A New Zeolite Related to Linde Type A. Molecular Sieves, 106-115. doi:10.1021/ba-1973-0121.ch009 es_ES
dc.description.references Chatelain, T., Patarin, J., Fousson, E., Soulard, M., Guth, J. L., & Schulz, P. (1995). Synthesis and characterization of high-silica zeolite RHO prepared in the presence of 18-crown-6 ether as organic template. Microporous Materials, 4(2-3), 231-238. doi:10.1016/0927-6513(95)00009-x es_ES
dc.description.references Himeno, S., Tomita, T., Suzuki, K., & Yoshida, S. (2007). Characterization and selectivity for methane and carbon dioxide adsorption on the all-silica DD3R zeolite. Microporous and Mesoporous Materials, 98(1-3), 62-69. doi:10.1016/j.micromeso.2006.05.018 es_ES
dc.description.references Cavenati, S., Grande, C. A., & Rodrigues, A. E. (2004). Adsorption Equilibrium of Methane, Carbon Dioxide, and Nitrogen on Zeolite 13X at High Pressures. Journal of Chemical & Engineering Data, 49(4), 1095-1101. doi:10.1021/je0498917 es_ES
dc.description.references LI, S. (2004). SAPO-34 membranes for CO2/CH4 separation. Journal of Membrane Science, 241(1), 121-135. doi:10.1016/j.memsci.2004.04.027 es_ES
dc.description.references Van den Bergh, J., Zhu, W., Gascon, J., Moulijn, J. A., & Kapteijn, F. (2008). Separation and permeation characteristics of a DD3R zeolite membrane. Journal of Membrane Science, 316(1-2), 35-45. doi:10.1016/j.memsci.2007.12.051 es_ES
dc.description.references L. B. McCusker and C.Baerlocher, in Proceed. 6th Inter. Zeolite Conf., ed. D. Olson and A. Bisio, Butterworths, 1984, p. 812 es_ES
dc.description.references Corbin, D. R., Abrams, L., Jones, G. A., Eddy, M. M., Harrison, W. T. A., Stucky, G. D., & Cox, D. E. (1990). Flexibility of the zeolite RHO framework: in situ x-ray and neutron powder structural characterization of divalent cation-exchanged zeolite RHO. Journal of the American Chemical Society, 112(12), 4821-4830. doi:10.1021/ja00168a029 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem