- -

Pattern Recognition in a Bimodal Aquifer Using the Normal-Score Ensemble Kalman Filter

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Pattern Recognition in a Bimodal Aquifer Using the Normal-Score Ensemble Kalman Filter

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Zhou, Haiyan es_ES
dc.contributor.author Li, Liangping es_ES
dc.contributor.author Hendricks Franssen, Harrie-Jan es_ES
dc.contributor.author Gómez-Hernández, J. Jaime es_ES
dc.date.accessioned 2015-01-27T18:38:48Z
dc.date.available 2015-01-27T18:38:48Z
dc.date.issued 2012-02
dc.identifier.issn 1874-8961
dc.identifier.uri http://hdl.handle.net/10251/46456
dc.description.abstract The ensemble Kalman filter (EnKF) is now widely used in diverse disciplines to estimate model parameters and update model states by integrating observed data. The EnKF is known to perform optimally only for multi-Gaussian distributed states and parameters. A new approach, the normal-score EnKF (NS-EnKF), has been recently proposed to handle complex aquifers with non-Gaussian distributed parameters. In this work, we aim at investigating the capacity of the NS-EnKF to identify patterns in the spatial distribution of the model parameters (hydraulic conductivities) by assimilating dynamic observations in the absence of direct measurements of the parameters themselves. In some situations, hydraulic conductivity measurements (hard data) may not be available, which requires the estimation of conductivities from indirect observations, such as piezometric heads. We show how the NS-EnKF is capable of retrieving the bimodal nature of a synthetic aquifer solely from piezometric head data. By comparison with a more standard implementation of the EnKF, the NS-EnKF gives better results with regard to histogram preservation, uncertainty assessment, and transport predictions. © 2011 International Association for Mathematical Geosciences. es_ES
dc.description.sponsorship The authors gratefully acknowledge the financial support by the Spanish Ministry of Science and Innovation through project CGL2011-23295. The first author appreciates the financial aid from China Scholarship Council (CSC No. [2007]3020). en_EN
dc.language Inglés es_ES
dc.publisher Springer Verlag (Germany) es_ES
dc.relation.ispartof Mathematical Geosciences es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Groundwater modeling es_ES
dc.subject Hard data es_ES
dc.subject Large heterogeneity es_ES
dc.subject Non-multi-Gaussian es_ES
dc.subject Parameter identification es_ES
dc.subject Uncertainty es_ES
dc.subject Aquifers es_ES
dc.subject Hydraulic conductivity es_ES
dc.subject Hydrogeology es_ES
dc.subject Identification (control systems) es_ES
dc.subject Kalman filters es_ES
dc.subject Pattern recognition es_ES
dc.subject.classification INGENIERIA HIDRAULICA es_ES
dc.title Pattern Recognition in a Bimodal Aquifer Using the Normal-Score Ensemble Kalman Filter es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s11004-011-9372-3
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//CGL2011-23295/ES/MODELACION ESTOCASTICA INVERSA FUERA DE LO NORMAL/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/CSC//[2007]3020/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient es_ES
dc.description.bibliographicCitation Zhou, H.; Li, L.; Hendricks Franssen, H.; Gómez-Hernández, JJ. (2012). Pattern Recognition in a Bimodal Aquifer Using the Normal-Score Ensemble Kalman Filter. Mathematical Geosciences. 44(2):169-185. https://doi.org/10.1007/s11004-011-9372-3 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1007/s11004-011-9372-3 es_ES
dc.description.upvformatpinicio 169 es_ES
dc.description.upvformatpfin 185 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 44 es_ES
dc.description.issue 2 es_ES
dc.relation.senia 233951
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.contributor.funder China Scholarship Council es_ES
dc.description.references Arulampalam MS, Maskell S, Gordon N, Clapp T (2002) A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking. IEEE Trans Signal Process 50(2):174–188 es_ES
dc.description.references Bertino L, Evensen G, Wackernagel H (2003) Sequential data assimilation techniques in oceanography. Int Stat Rev 71(2):223–241 es_ES
dc.description.references Burgers G, Jan van Leeuwen P, Evensen G (1998) Analysis scheme in the ensemble Kalman filter. Mon Weather Rev 126(6):1719–1724 es_ES
dc.description.references Carrera J, Neuman SP (1986b) Estimation of aquifer parameters under transient and steady state conditions: 2. Uniqueness, stability, and solution algorithms. Water Resour Res 22(2):211–227 es_ES
dc.description.references Chen Y, Zhang D (2006) Data assimilation for transient flow in geologic formations via ensemble Kalman filter. Adv Water Resour 29:1107–1122 es_ES
dc.description.references Delhomme JP (1979) Spatial variability and uncertainty in groundwater flow parameters: a geostatistical approach. Water Resour Res 15(2):269–280 es_ES
dc.description.references Evensen G (1994) Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics. J Geophys Res 99(C5):10143–10162 es_ES
dc.description.references Evensen G (2007) Data assimilation: the ensemble Kalman filter. Springer, Berlin, 279 pp es_ES
dc.description.references Fernàndez-Garcia D, Illangasekare T, Rajaram H (2005) Differences in the scale dependence of dispersivity and retardation factors estimated from forced-gradient and uniform flow tracer tests in three-dimensional physically and chemically heterogeneous porous media. Water Resour Res 41(3):W03012 es_ES
dc.description.references Gómez-Hernández JJ, Journel AG (1993) Joint sequential simulation of multi-Gaussian fields. In: Soares A (ed) Geostatistics Tróia ’92, vol 1. Kluwer Academic, Dordrecht, pp 85–94 es_ES
dc.description.references Gómez-Hernández JJ, Wen XH (1998) To be or not to be multi-Gaussian? A reflection on stochastic hydrogeology. Adv Water Resour 21(1):47–61 es_ES
dc.description.references Gu Y, Oliver DS (2006) The ensemble Kalman filter for continuous updating of reservoir simulation models. J Energy Resour Technol 128:79–87 es_ES
dc.description.references Harbaugh AW, Banta ER, Hill MC, McDonald MG (2000) MODFLOW-2000, the U.S. geological survey modular ground-water model—user guide to modularization concepts and the ground-water flow process. Tech rep. Open-File Report 00-92, U.S. Department of the Interior, U.S. Geological Survey. Reston, Virginia, 121 pp es_ES
dc.description.references Hendricks Franssen HJ, Kinzelbach W (2008) Real-time groundwater flow modeling with the Ensemble Kalman Filter: joint estimation for states and parameters and the filter inbreeding problem. Water Resour Res 44:W09408 es_ES
dc.description.references Hendricks Franssen HJ, Kinzelbach W (2009) Ensemble Kalman filtering versus sequential self-calibration for inverse modelling of dynamic groundwater flow systems. J Hydrol 365(3–4):261–274 es_ES
dc.description.references Houtekamer PL, Mitchell HL (2001) A sequential ensemble Kalman filter for atmospheric data assimilation. Mon Weather Rev 129:123–137 es_ES
dc.description.references Journel AG, Deutsch CV (1993) Entropy and spatial disorder. Math Geol 25(3):329–355 es_ES
dc.description.references Li L, Zhou H, Gómez-Hernández JJ (2011a) A comparative study of three-dimensional hydraulic conductivity upscaling at the macrodispersion experiment (MADE) site, Columbus air force base, Mississippi (USA). J Hydrol 404(3–4):278–293 es_ES
dc.description.references Li L, Zhou H, Gómez-Hernández JJ (2011b) Transport upscaling using multi-rate mass transfer in three-dimensional highly heterogeneous porous media. Adv Water Resour 34(4):478–489 es_ES
dc.description.references Moradkhani H, Sorooshian S, Gupta HV, Houser PR (2005) Dual state-parameter estimation of hydrological models using ensemble Kalman filter. Adv Water Resour 28:135–147 es_ES
dc.description.references Naevdal G, Johnsen L, Aanonsen S, Vefring E (Mar. 2005) Reservoir monitoring and continuous model updating using ensemble Kalman filter. SPE J 10(1):66–74 es_ES
dc.description.references Pardo-Igúzquiza E, Dowd PA (2003) CONNEC3D: a computer program for connectivity analysis of 3D random set models. Comput Geosci 29:775–785 es_ES
dc.description.references Schöniger A, Nowak W, Hendricks Franssen HJ (2011) Parameter estimation by ensemble Kalman filters with transformed data: approach and application to hydraulic tomography. Water Resour Res (submitted) es_ES
dc.description.references Simon E, Bertino L (2009) Application of the Gaussian anamorphosis to assimilation in a 3-D coupled physical-ecosystem model of the North Atlantic with the EnKF: a twin experiment. Ocean Sci 5:495–510 es_ES
dc.description.references Stauffer D, Aharony A (1994) Introduction to percolation theory. Taylor and Francis, London. 181 pp es_ES
dc.description.references Strébelle S 2000. Sequential simulation drawing structures from training images. PhD thesis, Stanford University. 187 pp es_ES
dc.description.references Strebelle S (2002) Conditional simulation of complex geological structures using multiple-point statistics. Math Geol 34(1):1–21 es_ES
dc.description.references Wen X, Chen W (2006) Real-time reservoir model updating using ensemble Kalman filter: the confirming approach. SPE J 11(4):431–442 es_ES
dc.description.references Wen X, Chen W (2007) Some practical issues on real time reservoir updating using ensemble Kalman filter. SPE J 12(2):156–166 es_ES
dc.description.references Zhou H, Gómez-Hernández JJ, Hendricks Franssen H-J, Li L (2011) An approach to handling non-gaussianity of parameters and state variables in ensemble Kalman filtering. Adv Water Resour 34(7):844–864 es_ES
dc.description.references Zinn B, Harvey C (2003) When good statistical models of aquifer heterogeneity go bad: a comparison of flow, dispersion, and mass transfer in connected and multivariate Gaussian hydraulic conductivity fields. Water Resour Res 39(3):1051 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem