- -

Full three-dimensional isotropic transformation media

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Full three-dimensional isotropic transformation media

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author García Meca, Carlos es_ES
dc.contributor.author Ortuño Molinero, Rubén es_ES
dc.contributor.author Martí Sendra, Javier es_ES
dc.contributor.author Martínez Abietar, Alejandro José es_ES
dc.date.accessioned 2015-11-09T08:13:12Z
dc.date.available 2015-11-09T08:13:12Z
dc.date.issued 2014-02-21
dc.identifier.uri http://hdl.handle.net/10251/57195
dc.description.abstract We present a method that enables the implementation of full three-dimensional (3D) transformation media with minimized anisotropy. It is based on a special kind of shape-preserving mapping and a subsequent optimization process. For sufficiently smooth transformations, the resulting anisotropy can be neglected, paving the way for practically realizable 3D devices. The method is independent of the considered wave phenomenon and can thus be applied to any field for which a transformational technique exists, such as acoustics or thermodynamics. Full 3D isotropy has an additional important implication for optical transformation media, as it eliminates the need for magnetic materials in many situations. To illustrate the potential of the method, we design 3D counterparts of transformation-based electromagnetic squeezers and bends. es_ES
dc.description.sponsorship The authors acknowledge support from projects Consolider EMET (CSD2008-00066), TEC 2011-28664-C02-02 and GVA ACOMP/2013/013. en_EN
dc.language Inglés es_ES
dc.publisher IOP Publishing: Open Access Journals es_ES
dc.relation.ispartof New Journal of Physics es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Metamaterials es_ES
dc.subject Transformation optics es_ES
dc.subject Quasi-conformal mappings es_ES
dc.subject Cloaking es_ES
dc.subject.classification TEORIA DE LA SEÑAL Y COMUNICACIONES es_ES
dc.title Full three-dimensional isotropic transformation media es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1088/1367-2630/16/2/023030
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//CSD2008-00066/ES/Ingeniería de Metamateriales/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//TEC2011-28664-C02-02/ES/APPLICATIONS OF METAMATERIALS IN THE OPTICAL RANGE/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//ACOMP%2F2013%2F013/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Tecnología Nanofotónica - Institut Universitari de Tecnologia Nanofotònica es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions es_ES
dc.description.bibliographicCitation García Meca, C.; Ortuño Molinero, R.; Martí Sendra, J.; Martínez Abietar, AJ. (2014). Full three-dimensional isotropic transformation media. New Journal of Physics. 16. https://doi.org/10.1088/1367-2630/16/2/023030 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1088/1367-2630/16/2/023030 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 16 es_ES
dc.relation.senia 268374 es_ES
dc.identifier.eissn 1367-2630
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.description.references Leonhardt, U. (2006). Optical Conformal Mapping. Science, 312(5781), 1777-1780. doi:10.1126/science.1126493 es_ES
dc.description.references Pendry, J. B. (2006). Controlling Electromagnetic Fields. Science, 312(5781), 1780-1782. doi:10.1126/science.1125907 es_ES
dc.description.references Schurig, D., Mock, J. J., Justice, B. J., Cummer, S. A., Pendry, J. B., Starr, A. F., & Smith, D. R. (2006). Metamaterial Electromagnetic Cloak at Microwave Frequencies. Science, 314(5801), 977-980. doi:10.1126/science.1133628 es_ES
dc.description.references Greenleaf, A., Kurylev, Y., Lassas, M., & Uhlmann, G. (2007). Electromagnetic Wormholes and Virtual Magnetic Monopoles from Metamaterials. Physical Review Letters, 99(18). doi:10.1103/physrevlett.99.183901 es_ES
dc.description.references Shalaev, V. M. (2008). PHYSICS: Transforming Light. Science, 322(5900), 384-386. doi:10.1126/science.1166079 es_ES
dc.description.references Chen, H., Chan, C. T., & Sheng, P. (2010). Transformation optics and metamaterials. Nature Materials, 9(5), 387-396. doi:10.1038/nmat2743 es_ES
dc.description.references Cummer, S. A., & Schurig, D. (2007). One path to acoustic cloaking. New Journal of Physics, 9(3), 45-45. doi:10.1088/1367-2630/9/3/045 es_ES
dc.description.references Chen, H., & Chan, C. T. (2007). Acoustic cloaking in three dimensions using acoustic metamaterials. Applied Physics Letters, 91(18), 183518. doi:10.1063/1.2803315 es_ES
dc.description.references Norris, A. N. (2009). Acoustic metafluids. The Journal of the Acoustical Society of America, 125(2), 839-849. doi:10.1121/1.3050288 es_ES
dc.description.references García-Meca, C., Carloni, S., Barceló, C., Jannes, G., Sánchez-Dehesa, J., & Martínez, A. (2013). Analogue Transformations in Physics and their Application to Acoustics. Scientific Reports, 3(1). doi:10.1038/srep02009 es_ES
dc.description.references Norris, A. N., & Shuvalov, A. L. (2011). Elastic cloaking theory. Wave Motion, 48(6), 525-538. doi:10.1016/j.wavemoti.2011.03.002 es_ES
dc.description.references Zhang, S., Genov, D. A., Sun, C., & Zhang, X. (2008). Cloaking of Matter Waves. Physical Review Letters, 100(12). doi:10.1103/physrevlett.100.123002 es_ES
dc.description.references Guenneau, S., Amra, C., & Veynante, D. (2012). Transformation thermodynamics: cloaking and concentrating heat flux. Optics Express, 20(7), 8207. doi:10.1364/oe.20.008207 es_ES
dc.description.references Landy, N. I., Kundtz, N., & Smith, D. R. (2010). Designing Three-Dimensional Transformation Optical Media Using Quasiconformal Coordinate Transformations. Physical Review Letters, 105(19). doi:10.1103/physrevlett.105.193902 es_ES
dc.description.references Urzhumov, Y., Landy, N., & Smith, D. R. (2012). Isotropic-medium three-dimensional cloaks for acoustic and electromagnetic waves. Journal of Applied Physics, 111(5), 053105. doi:10.1063/1.3691242 es_ES
dc.description.references Danner, A. J., Tyc, T., & Leonhardt, U. (2011). Controlling birefringence in dielectrics. Nature Photonics, 5(6), 357-359. doi:10.1038/nphoton.2011.53 es_ES
dc.description.references Li, J., & Pendry, J. B. (2008). Hiding under the Carpet: A New Strategy for Cloaking. Physical Review Letters, 101(20). doi:10.1103/physrevlett.101.203901 es_ES
dc.description.references Chang, Z., Zhou, X., Hu, J., & Hu, G. (2010). Design method for quasi-isotropic transformation materials based on inverse Laplace’s equation with sliding boundaries. Optics Express, 18(6), 6089. doi:10.1364/oe.18.006089 es_ES
dc.description.references Chen, H., & Zheng, B. (2012). Broadband polygonal invisibility cloak for visible light. Scientific Reports, 2(1). doi:10.1038/srep00255 es_ES
dc.description.references Landy, N., & Smith, D. R. (2012). A full-parameter unidirectional metamaterial cloak for microwaves. Nature Materials, 12(1), 25-28. doi:10.1038/nmat3476 es_ES
dc.description.references Rahm, M., Schurig, D., Roberts, D. A., Cummer, S. A., Smith, D. R., & Pendry, J. B. (2008). Design of electromagnetic cloaks and concentrators using form-invariant coordinate transformations of Maxwell’s equations. Photonics and Nanostructures - Fundamentals and Applications, 6(1), 87-95. doi:10.1016/j.photonics.2007.07.013 es_ES
dc.description.references Rahm, M., Roberts, D. A., Pendry, J. B., & Smith, D. R. (2008). Transformation-optical design of adaptive beam bends and beam expanders. Optics Express, 16(15), 11555. doi:10.1364/oe.16.011555 es_ES
dc.description.references Schmiele, M., Varma, V. S., Rockstuhl, C., & Lederer, F. (2010). Designing optical elements from isotropic materials by using transformation optics. Physical Review A, 81(3). doi:10.1103/physreva.81.033837 es_ES
dc.description.references García-Meca, C., Tung, M. M., Galán, J. V., Ortuño, R., Rodríguez-Fortuño, F. J., Martí, J., & Martínez, A. (2011). Squeezing and expanding light without reflections via transformation optics. Optics Express, 19(4), 3562. doi:10.1364/oe.19.003562 es_ES
dc.description.references Liu, D., Gabrielli, L. H., Lipson, M., & Johnson, S. G. (2013). Transformation inverse design. Optics Express, 21(12), 14223. doi:10.1364/oe.21.014223 es_ES
dc.description.references (2008). ACM Transactions on Graphics, 27(3). doi:10.1145/1360612 es_ES
dc.description.references Lipman, Y., & Levin, D. (2010). Derivation and Analysis of Green Coordinates. Computational Methods and Function Theory, 10(1), 167-188. doi:10.1007/bf03321761 es_ES
dc.description.references Nelder, J. A., & Mead, R. (1965). A Simplex Method for Function Minimization. The Computer Journal, 7(4), 308-313. doi:10.1093/comjnl/7.4.308 es_ES
dc.description.references Paillé, G.-P., & Poulin, P. (2012). As-conformal-as-possible discrete volumetric mapping. Computers & Graphics, 36(5), 427-433. doi:10.1016/j.cag.2012.03.014 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem