- -

Evaluation of a timing integrated circuit architecture for continuous crystal and SiPM based PET systems

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Evaluation of a timing integrated circuit architecture for continuous crystal and SiPM based PET systems

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Monzó Ferrer, José María es_ES
dc.contributor.author Ros García, Ana es_ES
dc.contributor.author Herrero Bosch, Vicente es_ES
dc.contributor.author Perino Vicentini, Ivan Virgilio es_ES
dc.contributor.author Aliaga Varea, Ramón José es_ES
dc.contributor.author Gadea Gironés, Rafael es_ES
dc.contributor.author Colom Palero, Ricardo José es_ES
dc.date.accessioned 2015-11-10T08:18:35Z
dc.date.available 2015-11-10T08:18:35Z
dc.date.issued 2013-03
dc.identifier.uri http://hdl.handle.net/10251/57251
dc.description.abstract [EN] Improving timing resolution in positron emission tomography (PET), thus having fine time information of the detected pulses, is important to increase the reconstructed images signal to noise ratio (SNR) [1]. In the present work, an integrated circuit topology for time extraction of the incoming pulses is evaluated. An accurate simulation including the detector physics and the electronics with different configurations has been developed. The selected architecture is intended for a PET system based on a continuous scintillation crystal attached to a SiPM array. The integrated circuit extracts the time stamp from the first few photons generated when the gamma-ray interacts with the scintillator, thus obtaining the best time resolution. To get the time stamp from the detected pulses, a time to digital converter (TDC) array based architecture has been proposed as in [2] or [3]. The TDC input stage uses a current comparator to transform the analog signal into a digital signal. Individually configurable trigger levels allow us to avoid false triggers due to signal noise. Using a TDC per SiPM configuration results in a very area consuming integrated circuit. One solution to this problem is to join several SiPM outputs to one TDC. This reduces the number of TDCs but, on the other hand, the first photons will be more difficult to be detected. For this reason, it is important to simulate how the time resolution is degraded when the number of TDCs is reduced. Following this criteria, the best configuration will be selected considering the trade-off between achievable time resolution and the cost per chip. A simulation is presented that uses Geant4 for simulation of the physics process and, for the electronic blocks, spice and Matlab. The Geant4 stage simulates the gamma-ray interaction with the scintillator, the photon shower generation and the first stages of the SiPM. The electronics simulation includes an electrical model of the SiPMarray and all the integrated circuitry that generates the time stamps. Time resolution results are analyzed using Matlab. The goal is to analyze the best resolution achievable with the SiPM and its degradation due to different circuitry configurations. es_ES
dc.description.sponsorship This work was supported by local government Conselleria d’Educacio — Generalitat Valenciana research program GV/2011/068.
dc.language Inglés es_ES
dc.publisher IOP Publishing: Hybrid Open Access es_ES
dc.relation.ispartof Journal of Instrumentation es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Gamma camera es_ES
dc.subject SPECT es_ES
dc.subject PET PET/CT es_ES
dc.subject Coronary CT angiography (CTA) es_ES
dc.subject Timing detectors es_ES
dc.subject Electronic detector readout concepts (solid-state) es_ES
dc.subject Front-end electronics for detector readout es_ES
dc.subject.classification TECNOLOGIA ELECTRONICA es_ES
dc.title Evaluation of a timing integrated circuit architecture for continuous crystal and SiPM based PET systems es_ES
dc.type Artículo es_ES
dc.type Comunicación en congreso
dc.identifier.doi 10.1088/1748-0221/8/03/C03017
dc.relation.projectID info:eu-repo/grantAgreement/GVA//GV%2F2011%2F068/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Instrumentación para Imagen Molecular - Institut d'Instrumentació per a Imatge Molecular es_ES
dc.description.bibliographicCitation Monzó Ferrer, JM.; Ros García, A.; Herrero Bosch, V.; Perino Vicentini, IV.; Aliaga Varea, RJ.; Gadea Gironés, R.; Colom Palero, RJ. (2013). Evaluation of a timing integrated circuit architecture for continuous crystal and SiPM based PET systems. Journal of Instrumentation. 8. https://doi.org/10.1088/1748-0221/8/03/C03017 es_ES
dc.description.accrualMethod S es_ES
dc.relation.conferencename 14th International workshop on radiation imaging detectors
dc.relation.conferencedate July 1-5, 2012
dc.relation.conferenceplace Figueira da Foz, Portugal
dc.relation.publisherversion http://dx.doi.org/10.1088/1748-0221/8/03/C03017 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 8 es_ES
dc.relation.senia 238055 es_ES
dc.identifier.eissn 1748-0221
dc.contributor.funder Generalitat Valenciana
dc.description.references Moses, W. W. (2003). Time of flight in pet revisited. IEEE Transactions on Nuclear Science, 50(5), 1325-1330. doi:10.1109/tns.2003.817319 es_ES
dc.description.references Fang, X., Ollivier-Henry, N., Gao, W., Hu-Guo, C., Colledani, C., Humbert, B., … Hu, Y. (2011). IMOTEPAD: A mixed-signal 64-channel front-end ASIC for small-animal PET imaging. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 634(1), 106-112. doi:10.1016/j.nima.2011.01.082 es_ES
dc.description.references Abidi, M., Koua Calliste, K., Kanoun, M., Panier, S., Arpin, L., Tetraul, M.-A., … Fontaine, R. (2010). A Delay Locked Loop for fine time base generation in a positron emission tomography scanner. 5th International Conference on Design & Technology of Integrated Systems in Nanoscale Era. doi:10.1109/dtis.2010.5487578 es_ES
dc.description.references Karp, J. S., Surti, S., Daube-Witherspoon, M. E., & Muehllehner, G. (2008). Benefit of Time-of-Flight in PET: Experimental and Clinical Results. Journal of Nuclear Medicine, 49(3), 462-470. doi:10.2967/jnumed.107.044834 es_ES
dc.description.references Monzo, J. M., Aliaga, R. J., Herrero, V., Martinez, J. D., Mateo, F., Sebastia, A., … Pavon, N. (2008). Accurate Simulation Testbench for Nuclear Imaging Systems. IEEE Transactions on Nuclear Science, 55(1), 421-428. doi:10.1109/tns.2007.912878 es_ES
dc.description.references Avella, P., De Santo, A., Lohstroh, A., Sajjad, M. T., & Sellin, P. J. (2012). A study of timing properties of Silicon Photomultipliers. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 695, 257-260. doi:10.1016/j.nima.2011.11.049 es_ES
dc.description.references Seifert, S., van Dam, H. T., Huizenga, J., Vinke, R., Dendooven, P., Lohner, H., & Schaart, D. R. (2009). Simulation of Silicon Photomultiplier Signals. IEEE Transactions on Nuclear Science, 56(6), 3726-3733. doi:10.1109/tns.2009.2030728 es_ES
dc.description.references Corsi, F., Marzocca, C., Perrotta, A., Dragone, A., Foresta, M., Del Guerra, A., … Levi, G. (2006). Electrical Characterization of Silicon Photo-Multiplier Detectors for Optimal Front-End Design. 2006 IEEE Nuclear Science Symposium Conference Record. doi:10.1109/nssmic.2006.356076 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem