- -

Superior Performance of Fe(BTC) With Respect to Other Metal-Containing Solids in the N-Hydroxyphthalimide-Promoted Heterogeneous Aerobic Oxidation of Cycloalkanes

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Superior Performance of Fe(BTC) With Respect to Other Metal-Containing Solids in the N-Hydroxyphthalimide-Promoted Heterogeneous Aerobic Oxidation of Cycloalkanes

Mostrar el registro completo del ítem

Mikami, Y.; Dhakshinamoorthy, A.; Alvaro Rodríguez, MM.; García Gómez, H. (2013). Superior Performance of Fe(BTC) With Respect to Other Metal-Containing Solids in the N-Hydroxyphthalimide-Promoted Heterogeneous Aerobic Oxidation of Cycloalkanes. ChemCatChem. 5(7):1964-1970. https://doi.org/10.1002/cctc.201200854

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/57696

Ficheros en el ítem

Metadatos del ítem

Título: Superior Performance of Fe(BTC) With Respect to Other Metal-Containing Solids in the N-Hydroxyphthalimide-Promoted Heterogeneous Aerobic Oxidation of Cycloalkanes
Autor: Mikami, Yusuke Dhakshinamoorthy, Amarajothi Alvaro Rodríguez, Maria Mercedes García Gómez, Hermenegildo
Entidad UPV: Universitat Politècnica de València. Departamento de Química - Departament de Química
Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química
Fecha difusión:
Resumen:
A series of heterogeneous catalysts incorporating N-hydroxyphthalimide (NHPI) and contg. transition-metal ion as promoter (Fe3+ or Co2+) on a support such as Fe(BTC) (BTC=1,3,5-benzenetricarboxylate), zeolites Y and Beta, ...[+]
Palabras clave: cycloalkanes , metal-organic frameworks , oxidation , zeolites
Derechos de uso: Cerrado
Fuente:
ChemCatChem. (issn: 1867-3880 )
DOI: 10.1002/cctc.201200854
Editorial:
Wiley-VCH Verlag
Versión del editor: http://dx.doi.org/10.1002/cctc.201200854
Código del Proyecto:
info:eu-repo/grantAgreement/MICINN//CTQ2009-11583/ES/Ruptura Fotocaliftica del Agua con Luz Solar/
Agradecimientos:
Financial support by the Spanish MINECOM (CTQ-2009-11586) is gratefully acknowledged. ADM thanks the University Grants Commission (UGC), New Delhi, for the award of Faculty Recharge Programme.
Tipo: Artículo

References

Davies, H. M. L., & Manning, J. R. (2008). Catalytic C–H functionalization by metal carbenoid and nitrenoid insertion. Nature, 451(7177), 417-424. doi:10.1038/nature06485

Arndtsen, B. A., Bergman, R. G., Mobley, T. A., & Peterson, T. H. (1995). Selective Intermolecular Carbon-Hydrogen Bond Activation by Synthetic Metal Complexes in Homogeneous Solution. Accounts of Chemical Research, 28(3), 154-162. doi:10.1021/ar00051a009

Arends, I. W. C. E., & Sheldon, R. A. (2001). Activities and stabilities of heterogeneous catalysts in selective liquid phase oxidations: recent developments. Applied Catalysis A: General, 212(1-2), 175-187. doi:10.1016/s0926-860x(00)00855-3 [+]
Davies, H. M. L., & Manning, J. R. (2008). Catalytic C–H functionalization by metal carbenoid and nitrenoid insertion. Nature, 451(7177), 417-424. doi:10.1038/nature06485

Arndtsen, B. A., Bergman, R. G., Mobley, T. A., & Peterson, T. H. (1995). Selective Intermolecular Carbon-Hydrogen Bond Activation by Synthetic Metal Complexes in Homogeneous Solution. Accounts of Chemical Research, 28(3), 154-162. doi:10.1021/ar00051a009

Arends, I. W. C. E., & Sheldon, R. A. (2001). Activities and stabilities of heterogeneous catalysts in selective liquid phase oxidations: recent developments. Applied Catalysis A: General, 212(1-2), 175-187. doi:10.1016/s0926-860x(00)00855-3

Zhao, R., Wang, Y., Guo, Y., Guo, Y., Liu, X., Zhang, Z., … Lu, G. (2006). A novel Ce/AlPO-5 catalyst for solvent-free liquid phase oxidation of cyclohexane by oxygen. Green Chemistry, 8(5), 459. doi:10.1039/b517656e

Li, J., Li, X., Shi, Y., Mao, D., & Lu, G. (2010). Selective Oxidation of Cyclohexane by Oxygen in a Solvent-Free System over Lanthanide-Containing AlPO-5. Catalysis Letters, 137(3-4), 180-189. doi:10.1007/s10562-010-0352-x

Turrà, N., Acuña, A. B., Schimmöller, B., Mayr-Schmölzer, B., Mania, P., & Hermans, I. (2011). Aerobic Oxidation of Cyclohexane Catalyzed by Flame-Made Nano-Structured Co/SiO2 Materials. Topics in Catalysis, 54(10-12), 737-745. doi:10.1007/s11244-011-9678-x

Singh, A. P., Torita, N., Shylesh, S., Iwasa, N., & Arai, M. (2009). Catalytic Aerobic Oxidation of Cyclohexane and Ethyl Benzene Over Chromium-Containing Mesoporous Organosilicas. Catalysis Letters, 132(3-4), 492-499. doi:10.1007/s10562-009-0121-x

Liu, Y., Tsunoyama, H., Akita, T., Xie, S., & Tsukuda, T. (2010). Aerobic Oxidation of Cyclohexane Catalyzed by Size-Controlled Au Clusters on Hydroxyapatite: Size Effect in the Sub-2 nm Regime. ACS Catalysis, 1(1), 2-6. doi:10.1021/cs100043j

Połtowicz, J., Pamin, K., Tabor, E., Haber, J., Adamski, A., & Sojka, Z. (2006). Metallosalen complexes immobilized in zeolite NaX as catalysts of aerobic oxidation of cyclooctane. Applied Catalysis A: General, 299, 235-242. doi:10.1016/j.apcata.2005.10.034

Xie, J., Wang, Y., & Wei, Y. (2009). Immobilization of manganese tetraphenylporphyrin on Au/SiO2 as new catalyst for cyclohexane oxidation with air. Catalysis Communications, 11(2), 110-113. doi:10.1016/j.catcom.2009.09.006

Komiya, N., Naota, T., Oda, Y., & Murahashi, S.-I. (1997). Aerobic oxidation of alkanes and alkenes in the presence of aldehydes catalyzed by copper salts and copper-crown ether. Journal of Molecular Catalysis A: Chemical, 117(1-3), 21-37. doi:10.1016/s1381-1169(96)00263-4

Komiya, N., Naota, T., & Murahashi, S.-I. (1996). Aerobic oxidation of alkanes in the presence of acetaldehyde catalysed by copper-crown ether. Tetrahedron Letters, 37(10), 1633-1636. doi:10.1016/0040-4039(96)00074-3

Theyssen, N., & Leitner, W. (2002). Selective oxidation of cyclooctane to cyclootanone with molecular oxygen in the presence of compressed carbon dioxide. Chemical Communications, (5), 410-411. doi:10.1039/b111212k

Ishii, Y., Iwahama, T., Sakaguchi, S., Nakayama, K., & Nishiyama, Y. (1996). Alkane Oxidation with Molecular Oxygen Using a New Efficient Catalytic System: N-Hydroxyphthalimide (NHPI) Combined with Co(acac)n(n= 2 or 3)†. The Journal of Organic Chemistry, 61(14), 4520-4526. doi:10.1021/jo951970l

Ishii, Y., Sakaguchi, S., & Iwahama, T. (2001). Innovation of Hydrocarbon Oxidation with Molecular Oxygen and Related Reactions. Advanced Synthesis & Catalysis, 343(5), 393-427. doi:10.1002/1615-4169(200107)343:5<393::aid-adsc393>3.0.co;2-k

Sheldon, R. A., & Arends, I. W. C. E. (2004). Organocatalytic Oxidations Mediated by Nitroxyl Radicals. Advanced Synthesis & Catalysis, 346(910), 1051-1071. doi:10.1002/adsc.200404110

ISHII, Y., & SAKAGUCHI, S. (2006). Recent progress in aerobic oxidation of hydrocarbons by N-hydroxyimides. Catalysis Today, 117(1-3), 105-113. doi:10.1016/j.cattod.2006.05.006

Sawatari, N., Yokota, T., Sakaguchi, S., & Ishii, Y. (2001). Alkane Oxidation with Air Catalyzed by LipophilicN-Hydroxyphthalimides without Any Solvent. The Journal of Organic Chemistry, 66(23), 7889-7891. doi:10.1021/jo0158276

Minisci, F., Punta, C., & Recupero, F. (2006). Mechanisms of the aerobic oxidations catalyzed by N-hydroxyderivatives. Journal of Molecular Catalysis A: Chemical, 251(1-2), 129-149. doi:10.1016/j.molcata.2006.02.011

Rajabi, F., Clark, J. H., Karimi, B., & Macquarrie, D. J. (2005). The selective aerobic oxidation of methylaromatics to benzaldehydes using a unique combination of two heterogeneous catalysts. Organic & Biomolecular Chemistry, 3(5), 725. doi:10.1039/b419322a

Wentzel, B. B., Donners, M. P. ., Alsters, P. L., Feiters, M. C., & Nolte, R. J. . (2000). N -Hydroxyphthalimide/Cobalt(II) Catalyzed Low Temperature Benzylic Oxidation Using Molecular Oxygen. Tetrahedron, 56(39), 7797-7803. doi:10.1016/s0040-4020(00)00679-7

Corma, A., & García, H. (2003). Lewis Acids:  From Conventional Homogeneous to Green Homogeneous and Heterogeneous Catalysis. Chemical Reviews, 103(11), 4307-4366. doi:10.1021/cr030680z

HERMANS, I., VANDEUN, J., HOUTHOOFD, K., PEETERS, J., & JACOBS, P. (2007). Silica-immobilized N-hydroxyphthalimide: An efficient heterogeneous autoxidation catalyst. Journal of Catalysis, 251(1), 204-212. doi:10.1016/j.jcat.2007.06.025

Dhakshinamoorthy, A., Alvaro, M., & Garcia, H. (2011). Atmospheric‐Pressure, Liquid‐Phase, Selective Aerobic Oxidation of Alkanes Catalysed by Metal–Organic Frameworks. Chemistry – A European Journal, 17(22), 6256-6262. doi:10.1002/chem.201002664

Dhakshinamoorthy, A., Alvaro, M., & Garcia, H. (2012). Aerobic oxidation of cycloalkenes catalyzed by iron metal organic framework containing N-hydroxyphthalimide. Journal of Catalysis, 289, 259-265. doi:10.1016/j.jcat.2012.02.015

Dhakshinamoorthy, A., Alvaro, M., & Garcia, H. (2011). Aerobic Oxidation of Styrenes Catalyzed by an Iron Metal Organic Framework. ACS Catalysis, 1(8), 836-840. doi:10.1021/cs200128t

Dhakshinamoorthy, A., Alvaro, M., & Garcia, H. (2010). Aerobic Oxidation of Benzyl Amines to Benzyl Imines Catalyzed by Metal-Organic Framework Solids. ChemCatChem, 2(11), 1438-1443. doi:10.1002/cctc.201000175

Farrusseng, D., Aguado, S., & Pinel, C. (2009). Metall-organische Gerüste für die Katalyse. Angewandte Chemie, 121(41), 7638-7649. doi:10.1002/ange.200806063

Farrusseng, D., Aguado, S., & Pinel, C. (2009). Metal-Organic Frameworks: Opportunities for Catalysis. Angewandte Chemie International Edition, 48(41), 7502-7513. doi:10.1002/anie.200806063

Corma, A., García, H., & Llabrés i Xamena, F. X. (2010). Engineering Metal Organic Frameworks for Heterogeneous Catalysis. Chemical Reviews, 110(8), 4606-4655. doi:10.1021/cr9003924

Dhakshinamoorthy, A., Alvaro, M., & Garcia, H. (2011). Metal–organic frameworks as heterogeneous catalysts for oxidation reactions. Catalysis Science & Technology, 1(6), 856. doi:10.1039/c1cy00068c

Dhakshinamoorthy, A., Alvaro, M., Corma, A., & Garcia, H. (2011). Delineating similarities and dissimilarities in the use of metal organic frameworks and zeolites as heterogeneous catalysts for organic reactions. Dalton Transactions, 40(24), 6344. doi:10.1039/c1dt10354g

ChemCatChem 2012

Dhakshinamoorthy, A., Alvaro, M., Horcajada, P., Gibson, E., Vishnuvarthan, M., Vimont, A., … Garcia, H. (2012). Comparison of Porous Iron Trimesates Basolite F300 and MIL-100(Fe) As Heterogeneous Catalysts for Lewis Acid and Oxidation Reactions: Roles of Structural Defects and Stability. ACS Catalysis, 2(10), 2060-2065. doi:10.1021/cs300345b

Dhakshinamoorthy, A., Alvaro, M., & Garcia, H. (2009). Metal organic frameworks as efficient heterogeneous catalysts for the oxidation of benzylic compounds with t-butylhydroperoxide. Journal of Catalysis, 267(1), 1-4. doi:10.1016/j.jcat.2009.08.001

Corma, A. (2003). State of the art and future challenges of zeolites as catalysts. Journal of Catalysis, 216(1-2), 298-312. doi:10.1016/s0021-9517(02)00132-x

Corma, A. (1997). From Microporous to Mesoporous Molecular Sieve Materials and Their Use in Catalysis. Chemical Reviews, 97(6), 2373-2420. doi:10.1021/cr960406n

LLABRESIXAMENA, F., CASANOVA, O., GALIASSOTAILLEUR, R., GARCIA, H., & CORMA, A. (2008). Metal organic frameworks (MOFs) as catalysts: A combination of Cu2+ and Co2+ MOFs as an efficient catalyst for tetralin oxidation. Journal of Catalysis, 255(2), 220-227. doi:10.1016/j.jcat.2008.02.011

Maksimchuk, N. V., Kovalenko, K. A., Fedin, V. P., & Kholdeeva, O. A. (2012). Cyclohexane selective oxidation over metal–organic frameworks of MIL-101 family: superior catalytic activity and selectivity. Chemical Communications, 48(54), 6812. doi:10.1039/c2cc31877f

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem