- -

Removal of 8-quinolinecarboxylic acid pesticide from aqueous solution by adsorption on activated montmorillonites

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Removal of 8-quinolinecarboxylic acid pesticide from aqueous solution by adsorption on activated montmorillonites

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Mekhloufi, M. es_ES
dc.contributor.author Zehhaf, A. es_ES
dc.contributor.author Benyoucef, Abdelghani es_ES
dc.contributor.author Quijada Tomás, Cesar es_ES
dc.contributor.author Morallon, Emilia es_ES
dc.date.accessioned 2015-12-30T08:31:01Z
dc.date.available 2015-12-30T08:31:01Z
dc.date.issued 2013-12
dc.identifier.issn 0167-6369
dc.identifier.uri http://hdl.handle.net/10251/59285
dc.description.abstract Sodium montmorillonite (Na-M), acidic montmorillonite (H-M), and organo-acidic montmorillonite (Org-H-M) were applied to remove the herbicide 8-quinolinecarboxylic acid (8-QCA). The montmorillonites containing adsorbed 8-QCA were investigated by transmission electron microscopy, FT-IR spectroscopy, X-ray diffraction analysis, X-ray fluorescence thermogravimetric analysis, and physical adsorption of gases. Experiments showed that the amount of adsorbed 8-QCA increased at lower pH, reaching a maximum at pH 2. The adsorption kinetics was found to follow the pseudo-second-order kinetic model. The Langmuir model provided the best correlation of experimental data for adsorption equilibria. The adsorption of 8-QCA decreased in the order Org-H-M > H-M > Na-M. Isotherms were also used to obtain the thermodynamic parameters. The negative values of Delta G indicated the spontaneous nature of the adsorption process. es_ES
dc.description.sponsorship This work was supported by the National Agency for the Development of University Research (CRSTRA) and the Directorate General of Scientific Research and Technological Development of Algeria. The Ministerio de Economia y Competitividad (MAT2010-15273 project) and FEDER are also acknowledged. en_EN
dc.language Inglés es_ES
dc.publisher Springer Verlag (Germany) es_ES
dc.relation.ispartof Environmental Monitoring and Assessment es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Adsorption isotherms es_ES
dc.subject 8-Quinolinecarboxylic acid es_ES
dc.subject Activated montmorillonite es_ES
dc.subject Kinetics es_ES
dc.subject Thermodynamic data es_ES
dc.subject.classification QUIMICA FISICA es_ES
dc.title Removal of 8-quinolinecarboxylic acid pesticide from aqueous solution by adsorption on activated montmorillonites es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s10661-013-3338-5
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//MAT2010-15273/ES/ELECTRODOS NANOESTRUCTURADOS PARA APLICACIONES EN SENSORES ELECTROQUIMICOS Y SUPERCONDENSADORES/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Textil y Papelera - Departament d'Enginyeria Tèxtil i Paperera es_ES
dc.description.bibliographicCitation Mekhloufi, M.; Zehhaf, A.; Benyoucef, A.; Quijada Tomás, C.; Morallon, E. (2013). Removal of 8-quinolinecarboxylic acid pesticide from aqueous solution by adsorption on activated montmorillonites. Environmental Monitoring and Assessment. 185(12):10365-10375. https://doi.org/10.1007/s10661-013-3338-5 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1007/s10661-013-3338-5 es_ES
dc.description.upvformatpinicio 10365 es_ES
dc.description.upvformatpfin 10375 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 185 es_ES
dc.description.issue 12 es_ES
dc.relation.senia 252011 es_ES
dc.identifier.eissn 1573-2959
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.contributor.funder Centre de Recherche Scientifique et Technique sur les Régions Arides, Argelia es_ES
dc.contributor.funder Direction Générale de la Recherche Scientifique et du Développement Technologique, Argelia es_ES
dc.description.references Ayranci, E., & Hoda, N. (2005). Adsorption kinetics and isotherms of pesticides onto activated carbon-cloth. Chemosphere, 60, 1600–1607. es_ES
dc.description.references Belbachir, M., Bensaoula, A. (2001). US Patent no. 6, 274, 527 B1. es_ES
dc.description.references Bleam, W. F. (1990). The nature of cation-substitution sites in phyllosilicates. Clays and Clay Minerals, 38, 527–536. es_ES
dc.description.references Boyd, S. A., Mortland, M. M., & Chiou, C. T. (1988). Sorption characteristics of organic compounds on hexadecyltrimethylammonium-smectite. J Soil Sci Soc Am, 52, 652–657. es_ES
dc.description.references Brigatti, M. F., Lugli, C., & Poppi, L. (2000). Kinetics of heavy-metal removal and recovery in sepiolite. Applied Clay Science, 16, 45–57. es_ES
dc.description.references Cazorla, A. D., Alcañiz, M. J., & Linares, S. A. (1996). Characterization of activated carbon fibers by CO2 adsorption. Langmuir, 12, 2820–2824. es_ES
dc.description.references Cazorla, A. D., Alcañiz, M. J., De la Casa, L. M. A., & Linares, S. A. (1998). CO2 as an adsorptive to characterize carbon molecular sieves and activated carbons. Langmuir, 14, 4589–4596. es_ES
dc.description.references Celis, R., Trigo, C., Facenda, G., Hermosín, M. C., & Cornejo, J. (2007). Selective modification of clay minerals for the adsorption of herbicides widely used in olive groves. Journal of Agricultural and Food Chemistry, 55, 6650–6658. es_ES
dc.description.references Daneshvar, N., Aber, S., Khani, A., & Rasoulifard, M. H. (2007). Investigation of adsorption kinetics and isotherms of imidacloprid as a pollutant from aqueous solution by adsorption onto industrial granular activated carbon. Journal of Food Agriculture and Environment, 5, 425–429. es_ES
dc.description.references Dixon, J. B., Weed, S. B., & Dinauer, R. C. (1977). Minerals in soil environments. Berkeley: Soil Science Society of America. es_ES
dc.description.references Do-Nascimento, G. M., Constantino, V. R. L., Landers, R., & Temperini, M. L. A. (2004). Aniline polymerization into montmorillonite clay: a spectroscopic investigation of the intercalated conducting polymer. Macromolecules, 37, 9373–9385. es_ES
dc.description.references Forster, C. F. (2003). Wastewater treatment and technology. London: Thomas Telford. es_ES
dc.description.references Garribba, E., Micera, G., Sanna, D., & Chruscinska, E. L. (2003). Oxovanadium(IV) complexes of quinoline derivatives. Inorganica Chimica Acta, 348, 97–106. es_ES
dc.description.references Grossmann, K., & Scheltrup, F. (1998). Studies on the mechanism of selectivity of the auxin herbicide quinmerac. Pesticide Science, 52, 111–118. es_ES
dc.description.references Gu, B., Schmitt, J., Chen, Z., Liang, L., & McCarthy, J. F. (1995). Adsorption and desorption of different organic matter fractions on iron oxide. Geochimica et Cosmochimica Acta, 59, 219–229. es_ES
dc.description.references Gupta, V. K., Ali, I., & Saini, V. K. (2006). Adsorption of 2,4-d and carbofuran pesticides using fertilizer and steel industry wastes. Journal of Colloid and Interface Science, 299, 556–563. es_ES
dc.description.references Hamdaoui, O., & Naffrechoux, E. (2007). Modeling of adsorption isotherms of phenol and chlorophenols onto granular activated carbon. Part II. Models with more than two parameters. Journal of Hazardous Materials, 147, 401–411. es_ES
dc.description.references Hermosín, M. C., Celis, R., Facenda, G., Carrizosa, M. J., Ortega-Calvo, J. J., & Cornejo, J. (2006). Bioavailability of the herbicide 2,4-d formulated with organoclays. Soil Biology and Biochemistry, 38, 2117–2124. es_ES
dc.description.references Ho, Y. S., & McKay, G. (1999). Pseudo-second-order model for sorption processes. Process Biochemistry, 34, 451–465. es_ES
dc.description.references Huang, F. C., Lee, F. J., Lee, C. K., & Chao, H. P. (2004). Effects of cation exchange on the pore and surface structure and adsorption characteristics of montmorillonite. Colloid Surface A, 239, 41–47. es_ES
dc.description.references Jaynes, W. F., & Boyd, S. A. (1991). Clay mineral type and organic compound sorption by hexadecyltrimethylammonium-exchanged clays. Soil Science Society of American Journal, 55, 43–48. es_ES
dc.description.references Kiss, E., Petrohan, K., Sanna, D., Garribba, E., Micera, G., & Kiss, T. (2000). Solution speciation and spectral studies on oxovanadium(IV) complexes of pyridinecarboxylic acids. Polyhedron, 19, 55–61. es_ES
dc.description.references Klumpp, E., Ortega, C. C., & Klahre, P. (2004). Sorption of 2,4-dichlorophenol on modified hydrotalcites. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 230, 111–116. es_ES
dc.description.references Kul, A. R., & Koyunchu, H. (2010). Heavy metal removal from municipal solid waste fly ash by chlorination and thermal treatment. Journal of Hazardous Materials, 179, 332–339. es_ES
dc.description.references Lee, D. K., Char, K., Lee, S. W., & Park, Y. W. (2003). Structural changes of polyaniline/montmorillonite nanocomposites and their effects on physical properties. Journal of Materials Chemistry, 13, 2942–2947. es_ES
dc.description.references Lozano, C. D., Suárez, G. F., Cazorla, A. D., & Linares, S. A. (2009). Porous texture of carbons. In F. Beguin & E. Frackowiak (Eds.), Carbons for electrochemical energy storage and conversion systems (pp. 115–162). Boca Raton: CRC. es_ES
dc.description.references Noyan, H., Onal, M., & Sarikaya, Y. (2007). The effect of sulphuric acid activation on the crystallinity, surface area, porosity, surface acidity, and bleaching power of a bentonite. Food Chemistry, 105, 156–163. es_ES
dc.description.references Nzengung, V. A., Voudrias, E. A., Nkedi-Kizza, P., Wampler, J. M., & Weaver, C. E. (1996). Organic cosolvent effects on sorption equilibrium of hydrophobic organic chemicals by organoclays. Environmental Science and Technology, 30, 89–96. es_ES
dc.description.references Oyanedel-Craver, V. A., Fuller, M., & Smith, J. A. (2006). Simultaneous sorption of benzene and heavy metals onto two organoclays. Journal of Colloid and Interface Science, 309, 485–492. es_ES
dc.description.references Özcan, A., Ömeroglu, C., Erdogan, Y., & Özcan, A. S. (2006). Modification of bentonite with a cationic surfactant: an adsorption study of textile dye reactive blue 19. Journal of Hazardous Materials, 140, 173–179. es_ES
dc.description.references Pernyeszi, T., Kasteel, R., Witthuhn, B., Klahre, P., Vereecken, H., & Klumpp, E. (2006). Organoclays for soil remediation: adsorption of 2,4-dichlorophenol on organoclay/aquifer material mixtures studied under static and flow conditions. Applied Clay Science, 32, 179–189. es_ES
dc.description.references Redding, A. Z., Burns, S. E., Upson, R. T., & Anderson, E. F. (2002). Organoclay sorption of benzene as a function of total organic carbon content. Journal of Colloid and Interface Science, 250, 261–264. es_ES
dc.description.references Richard, W. G., Walter, J., & Weber, J. R. (2001). Evaluation of shale and organoclays as sorbent additives for low-permeability soil containment barriers. Environmental Science and Technology, 35, 1523–1530. es_ES
dc.description.references Salavagione, H. J., Amorós, D. C., Tidjane, S., Belbachir, M., Benyoucef, A., & Morallon, E. (2008). Effect of the intercalated cation on the properties of poly(o-methylaniline)/maghnite clay nanocomposites. European Polymer Journal, 44, 1275–1284. es_ES
dc.description.references Salman, J. M., & Hameed, B. H. (2010). Adsorption of 2,4-dichlorophenoxyacetic acid and carbofuran pesticides onto granular activated carbon. Desalination, 256, 129–135. es_ES
dc.description.references Seki, Y., & Yurdakoc, K. (2005). Paraquat adsorption onto clays and organoclays from aqueous solution. Journal of Colloid and Interface Science, 287, 1–5. es_ES
dc.description.references Sing, K., Everet, D., Haul, R., Moscou, L., Pierotty, R., Rouquerol, J., et al. (1985). Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure and Applied Chemistry, 57, 603–619. es_ES
dc.description.references Smith, J., Jaffe, P., & Chiou, C. (1990). Effect of ten quaternary ammonium cations on tetrachloromethane sorption to clay from water. Environmental Science and Technology, 24, 1167–1172. es_ES
dc.description.references Smith, J. A., & Galan, A. (1995). Sorption of nonionic organic contaminants to single and dual organic cation bentonites from water. Environmental Science and Technology, 29, 685–692. es_ES
dc.description.references Sotelo, J. L., Ovejero, G., Delgado, J. A., & Martínez, I. (2002). Comparison of adsorption equilibrium and kinetics of four chlorinated organics from water onto GAC. Water Research, 36, 599–608. es_ES
dc.description.references Sui, H., Li, X. G., Huang, G. Q., Zhang, Y., & Gao, X. F. (2003). The in-situ remediation technologies for soils contaminated by organic chemicals. Techniques and Equipment for Environmental Pollution Control, 4, 41–45. es_ES
dc.description.references Temuulin, J., Jadambaa, T. S., Burmaa, G., Erdenechimeg, S. H., Amarsanaa, J., & MacKenzie, K. J. D. (2004). Characterisation of acid activated montmorillonite clay from Tuulant (Mongolia). Ceramics International, 30, 251–255. es_ES
dc.description.references Wang, X. R., Wu, S. N., & Li, W. S. (1997). Contaminated environment remediation with organoclay minerals. Environmental Chemistry, 16, 1–14. es_ES
dc.description.references Wiles, M. C., Huebner, H. J., McDonald, T. J., Donnelly, K. C., & Phillips, T. D. (2005). Matrix-immobilized organoclay for the sorption of polycyclic aromatic hydrocarbons and pentachlorophenol from groundwater. Chemosphere, 59, 1455–1464. es_ES
dc.description.references Wu, C. S., Huang, Y. J., Hsieh, T. H., Huang, P. T., Hsieh, B. H., Han, Y. K., et al. (2008). Studies on the conducting nanocomposite prepared by in situ polymerization of aniline monomers in a neat (aqueous) synthetic mica clay. Journal of Polymer Science Part A: Polymer Chemistry, 46, 1800–1809. es_ES
dc.description.references Yapar, S., Ozbudak, V., Dias, A., & Lopes, A. (2005). Effect of adsorbent concentration to the adsorption of phenol on hexadecyltrimethylammonium-bentonite. Journal of Hazardous Materials B, 121, 135–139. es_ES
dc.description.references Yasser, Z. N., & Jamal, M. S. (2004). Adsorption of phenanthrene on organoclays from distilled and saline water. Journal of Colloid and Interface Science, 269, 265–273. es_ES
dc.description.references Zehhaf, A., Benyoucef, A., Berenguer, R., Quijada, C., Taleb, S., & Morallon, E. (2012). Lead ion adsorption from aqueous solutions in modified Algerian montmorillonites. Journal of Thermal Analysis and Calorimetry, 110, 1069–1077. es_ES
dc.description.references Zhou, Q., Frost, R. L., He, H. P., & Xi, Y. F. (2006). Changes in the surfaces of adsorbed para-nitrophenol on HDTMA organoclay. The XRD and TG study. Journal of Colloid and Interface Science, 307, 50–55. es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem