- -

A new methodology to estimate the discrete-return point density on airborne lidar surveys

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A new methodology to estimate the discrete-return point density on airborne lidar surveys

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Balsa Barreiro, José es_ES
dc.contributor.author Lerma García, José Luis es_ES
dc.date.accessioned 2015-12-30T09:16:08Z
dc.date.available 2015-12-30T09:16:08Z
dc.date.issued 2014-02
dc.identifier.issn 0143-1161
dc.identifier.uri http://hdl.handle.net/10251/59298
dc.description This is an author's accepted manuscript of an article published in "International Journal of Remote Sensing", Volume 35, Issue 4, 2014; copyright Taylor & Francis, available online at: http://www.tandfonline.com/doi/abs/10.1080/01431161.2013.878063 es_ES
dc.description.abstract The distribution of the discrete-return point density in airborne lidar flights obtained from an oscillating mirror laser scanner is analysed and alternative formulations to determine its value are presented. The point density in a lidar swath varies and can best be fitted with a potential function. This study confirms that calculating the overall point density with traditional statistical parameters yields biased results owing to the abnormally high densities of the swath boundaries. New formulas for calculating the representative mean are proposed: a weighted arithmetic mean (WAM) based on a potential function; geometric mean (GM); and harmonic mean (HM). All three means give more weight to the central sectors across the strip and less to the boundary sectors where extreme data redundancy exists. The WAM based on a potential function yields equivalent estimates as the HM; the GM yields slightly higher estimates. The results obtained improve the mean estimation and, more importantly, allow users to estimate better the mean point density on airborne lidar surveys, which are usually overestimated approximately by 15%. es_ES
dc.language Inglés es_ES
dc.publisher Taylor & Francis: STM, Behavioural Science and Public Health Titles es_ES
dc.relation.ispartof International Journal of Remote Sensing es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject LiDAR es_ES
dc.subject Point density es_ES
dc.subject Weighted arithmetic mean es_ES
dc.subject.classification INGENIERIA CARTOGRAFICA, GEODESIA Y FOTOGRAMETRIA es_ES
dc.title A new methodology to estimate the discrete-return point density on airborne lidar surveys es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1080/01431161.2013.878063
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Cartográfica Geodesia y Fotogrametría - Departament d'Enginyeria Cartogràfica, Geodèsia i Fotogrametria es_ES
dc.description.bibliographicCitation Balsa Barreiro, J.; Lerma García, JL. (2014). A new methodology to estimate the discrete-return point density on airborne lidar surveys. International Journal of Remote Sensing. 35(4):1496-1510. doi:10.1080/01431161.2013.878063 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1080/01431161.2013.878063 es_ES
dc.description.upvformatpinicio 1496 es_ES
dc.description.upvformatpfin 1510 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 35 es_ES
dc.description.issue 4 es_ES
dc.relation.senia 258342 es_ES
dc.description.references Anderson, E. S., Thompson, J. A., & Austin, R. E. (2005). LIDAR density and linear interpolator effects on elevation estimates. International Journal of Remote Sensing, 26(18), 3889-3900. doi:10.1080/01431160500181671 es_ES
dc.description.references Balsa-Barreiro, J. (2012). Airborne light detection and ranging (LiDAR) point density analysis. Scientific Research and Essays, 7(33). doi:10.5897/sre12.278 es_ES
dc.description.references Baltsavias, E. . (1999). Airborne laser scanning: basic relations and formulas. ISPRS Journal of Photogrammetry and Remote Sensing, 54(2-3), 199-214. doi:10.1016/s0924-2716(99)00015-5 es_ES
dc.description.references Borovkova, S., Jaya Permana, F., & Pavlyukevich, I. (2009). Modeling electricity prices by potential Lévy diffusions. The Journal of Energy Markets, 2(3), 83-110. doi:10.21314/jem.2009.022 es_ES
dc.description.references Efromovich, S. (2004). Density estimation for biased data. The Annals of Statistics, 32(3), 1137-1161. doi:10.1214/009053604000000300 es_ES
dc.description.references Ferguson, T. S. (1961). Rules for Rejection of Outliers. Revue de l’Institut International de Statistique / Review of the International Statistical Institute, 29(3), 29. doi:10.2307/1401948 es_ES
dc.description.references Gentleman, J. F., & Wilk, M. B. (1975). Detecting Outliers in a Two-Way Table: I. Statistical Behavior of Residuals. Technometrics, 17(1), 1-14. doi:10.1080/00401706.1975.10489265 es_ES
dc.description.references Gentleman, J. F., & Wilk, M. B. (1975). Detecting Outliers. II. Supplementing the Direct Analysis of Residuals. Biometrics, 31(2), 387. doi:10.2307/2529428 es_ES
dc.description.references Grubbs, F. E. (1950). Sample Criteria for Testing Outlying Observations. The Annals of Mathematical Statistics, 21(1), 27-58. doi:10.1214/aoms/1177729885 es_ES
dc.description.references Grubbs, F. E. (1969). Procedures for Detecting Outlying Observations in Samples. Technometrics, 11(1), 1-21. doi:10.1080/00401706.1969.10490657 es_ES
dc.description.references Grubbs, F. E., & Beck, G. (1972). Extension of Sample Sizes and Percentage Points for Significance Tests of Outlying Observations. Technometrics, 14(4), 847-854. doi:10.1080/00401706.1972.10488981 es_ES
dc.description.references Guttman, I., & Smith, D. E. (1969). Investigation of Rules for Dealing With Outliers in Small Samples from the Normal Distribution: I: Estimation of the Mean. Technometrics, 11(3), 527-550. doi:10.1080/00401706.1969.10490710 es_ES
dc.description.references Guttman, I., & Smith, D. E. (1971). Investigation of Rules for Dealing with Outliers in Small Samples from the Normal Distribution II: Estimation of the Variance. Technometrics, 13(1), 101-111. doi:10.1080/00401706.1971.10488757 es_ES
dc.description.references Hawkins, D. M. (1973). Repeated testing for outliers. Statistica Neerlandica, 27(1), 1-10. doi:10.1111/j.1467-9574.1973.tb00202.x es_ES
dc.description.references Hawkins, D. M. (1978). Analysis of three tests for one or two outliers. Statistica Neerlandica, 32(3), 137-148. doi:10.1111/j.1467-9574.1978.tb01394.x es_ES
dc.description.references Hawkins, D. M. (1979). Fractiles of an extended multiple outlier test. Journal of Statistical Computation and Simulation, 8(3-4), 227-236. doi:10.1080/00949657908810268 es_ES
dc.description.references Lari, Z., & Habib, A. (2012). ALTERNATIVE METHODOLOGIES FOR THE ESTIMATION OF LOCAL POINT DENSITY INDEX: MOVING TOWARDS ADAPTIVE LIDAR DATA PROCESSING. ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XXXIX-B3, 127-132. doi:10.5194/isprsarchives-xxxix-b3-127-2012 es_ES
dc.description.references Lari, Z., & Habib, A. (2013). New Approaches for Estimating the Local Point Density and its Impact on Lidar Data Segmentation. Photogrammetric Engineering & Remote Sensing, 79(2), 195-207. doi:10.14358/pers.79.2.195 es_ES
dc.description.references Limbrunner, J. F., Vogel, R. M., & Brown, L. C. (2000). Estimation of Harmonic Mean of a Lognormal Variable. Journal of Hydrologic Engineering, 5(1), 59-66. doi:10.1061/(asce)1084-0699(2000)5:1(59) es_ES
dc.description.references Mitchell, D. W. (2004). 88.27 More on spreads and non-arithmetic means. The Mathematical Gazette, 88(511), 142-144. doi:10.1017/s0025557200174534 es_ES
dc.description.references Nava-Ortega, R. A., Espino-Barr, E., Gallardo-Cabello, M., Garcia-Boa, A., Puente-Gómez, M., & Cabral-Solís, E. G. (2012). Growth analysis of the Pacific sierra Scomberomorus sierra in Colima, México. Revista de biología marina y oceanografía, 47(2), 273-281. doi:10.4067/s0718-19572012000200009 es_ES
dc.description.references Raber, G. T., Jensen, J. R., Hodgson, M. E., Tullis, J. A., Davis, B. A., & Berglund, J. (2007). Impact of Lidar Nominal Post-spacing on DEM Accuracy and Flood Zone Delineation. Photogrammetric Engineering & Remote Sensing, 73(7), 793-804. doi:10.14358/pers.73.7.793 es_ES
dc.description.references Rossman, L. A. (1990). Design Stream Flows Based on Harmonic Means. Journal of Hydraulic Engineering, 116(7), 946-950. doi:10.1061/(asce)0733-9429(1990)116:7(946) es_ES
dc.description.references Sharma, R. (2008). Some more inequalities for arithmetic mean, harmonic mean and variance. Journal of Mathematical Inequalities, (1), 109-114. doi:10.7153/jmi-02-11 es_ES
dc.description.references Tesfamichael, S. G., Ahmed, F. B., & Van Aardt, J. A. N. (2010). Investigating the impact of discrete-return lidar point density on estimations of mean and dominant plot-level tree height in Eucalyptus grandis plantations. International Journal of Remote Sensing, 31(11), 2925-2940. doi:10.1080/01431160903144086 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem