- -

Protein kinase GCN2 mediates responses to glyphosate in Arabidopsis

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Protein kinase GCN2 mediates responses to glyphosate in Arabidopsis

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Faus, I. es_ES
dc.contributor.author Zabalza Ostos, Ana Mª es_ES
dc.contributor.author Santiago, J. es_ES
dc.contributor.author González Nebauer, Sergio es_ES
dc.contributor.author Royuela, M. es_ES
dc.contributor.author Serrano, R. es_ES
dc.contributor.author Gadea, J. es_ES
dc.date.accessioned 2016-01-27T08:30:53Z
dc.date.available 2016-01-27T08:30:53Z
dc.date.issued 2015-01-21
dc.identifier.issn 1471-2229
dc.identifier.uri http://hdl.handle.net/10251/60217
dc.description.abstract Background: The increased selection pressure of the herbicide glyphosate has played a role in the evolution of glyphosate-resistance in weedy species, an issue that is becoming a threat to global agriculture. The molecular components involved in the cellular toxicity response to this herbicide at the expression level are still unidentified. Results: In this study, we identify the protein kinase GCN2 as a cellular component that fosters the action of glyphosate in the model plant Arabidopsis thaliana. Comparative studies using wild-type and gcn2 knock-out mutant seedlings show that the molecular programme that the plant deploys after the treatment with the herbicide, is compromised in gcn2. Moreover, gcn2 adult plants show a lower inhibition of photosynthesis, and both seedlings and adult gcn2 plants accumulate less shikimic acid than wild-type after treatment with glyphosate. Conclusions: These results points to an unknown GCN2-dependent factor involved in the cascade of events triggered by glyphosate in plants. Data suggest either that the herbicide does not equally reach the target-enzyme in a gcn2 background, or that a decreased flux in the shikimate pathway in a gcn2 plants minimize the impact of enzyme inhibition. es_ES
dc.description.sponsorship p This work was mainly supported by the Universidad Politecnica de Valencia (PAID2011-16) and the Ministerio Espanol de Ciencia y Tecnologia (BFU2011-22526). The work was partially supported through a grant from the Ministerio Espanol de Ciencia y Tecnologia (AGL-2010-18621). en_EN
dc.language Inglés es_ES
dc.publisher BioMed Central es_ES
dc.relation.ispartof BMC Plant Biology es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Glyphosate es_ES
dc.subject Gcn2 es_ES
dc.subject Transcriptomic es_ES
dc.subject Shikimate es_ES
dc.subject Translation es_ES
dc.subject Herbicide es_ES
dc.subject.classification FISIOLOGIA VEGETAL es_ES
dc.title Protein kinase GCN2 mediates responses to glyphosate in Arabidopsis es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1186/s12870-014-0378-0
dc.relation.projectID info:eu-repo/grantAgreement/UPV//PAID-2011-16/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//BFU2011-22526/ES/NUEVOS MECANISMOS DE TRANSMISION DE SEÑALES DURANTE EL METABOLISMO DE GLUCOSA Y LA ACIDIFICACION INTRACELULAR: AMPLIANDO LAS FUNCIONES DE LA PROTEINA FOSFATASA 1 Y LA PROTEINA/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Producción Vegetal - Departament de Producció Vegetal es_ES
dc.description.bibliographicCitation Faus, I.; Zabalza Ostos, AM.; Santiago, J.; González Nebauer, S.; Royuela, M.; Serrano, R.; Gadea, J. (2015). Protein kinase GCN2 mediates responses to glyphosate in Arabidopsis. BMC Plant Biology. 15(14). https://doi.org/10.1186/s12870-014-0378-0 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1186/s12870-014-0378-0 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 15 es_ES
dc.description.issue 14 es_ES
dc.relation.senia 280788 es_ES
dc.identifier.pmid 25603772 en_EN
dc.identifier.pmcid PMC4312595 en_EN
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.description.references Basu, C., Halfhill, M. D., Mueller, T. C., & Stewart, C. N. (2004). Weed genomics: new tools to understand weed biology. Trends in Plant Science, 9(8), 391-398. doi:10.1016/j.tplants.2004.06.003 es_ES
dc.description.references Délye, C. (2012). Unravelling the genetic bases of non-target-site-based resistance (NTSR) to herbicides: a major challenge for weed science in the forthcoming decade. Pest Management Science, 69(2), 176-187. doi:10.1002/ps.3318 es_ES
dc.description.references Powles, S. B., & Yu, Q. (2010). Evolution in Action: Plants Resistant to Herbicides. Annual Review of Plant Biology, 61(1), 317-347. doi:10.1146/annurev-arplant-042809-112119 es_ES
dc.description.references Ge, X., d’ Avignon, D. A., Ackerman, J. J. H., Collavo, A., Sattin, M., Ostrander, E. L., … Preston, C. (2012). Vacuolar Glyphosate-Sequestration Correlates with Glyphosate Resistance in Ryegrass (Lolium spp.) from Australia, South America, and Europe: A31P NMR Investigation. Journal of Agricultural and Food Chemistry, 60(5), 1243-1250. doi:10.1021/jf203472s es_ES
dc.description.references Duke, S. O., & Powles, S. B. (2008). Glyphosate: a once-in-a-century herbicide. Pest Management Science, 64(4), 319-325. doi:10.1002/ps.1518 es_ES
dc.description.references De María, N., Becerril, J. M., García-Plazaola, J. I., Hernández, A., de Felipe, M. R., & Fernández-Pascual, M. (2006). New Insights on Glyphosate Mode of Action in Nodular Metabolism:  Role of Shikimate Accumulation. Journal of Agricultural and Food Chemistry, 54(7), 2621-2628. doi:10.1021/jf058166c es_ES
dc.description.references Zulet, A., Gil-Monreal, M., Villamor, J. G., Zabalza, A., van der Hoorn, R. A. L., & Royuela, M. (2013). Proteolytic Pathways Induced by Herbicides That Inhibit Amino Acid Biosynthesis. PLoS ONE, 8(9), e73847. doi:10.1371/journal.pone.0073847 es_ES
dc.description.references Ahsan, N., Lee, D.-G., Lee, K.-W., Alam, I., Lee, S.-H., Bahk, J. D., & Lee, B.-H. (2008). Glyphosate-induced oxidative stress in rice leaves revealed by proteomic approach. Plant Physiology and Biochemistry, 46(12), 1062-1070. doi:10.1016/j.plaphy.2008.07.002 es_ES
dc.description.references Lu, W., Li, L., Chen, M., Zhou, Z., Zhang, W., Ping, S., … Lin, M. (2013). Genome-wide transcriptional responses of Escherichia coli to glyphosate, a potent inhibitor of the shikimate pathway enzyme 5-enolpyruvylshikimate-3-phosphate synthase. Mol. BioSyst., 9(3), 522-530. doi:10.1039/c2mb25374g es_ES
dc.description.references Servaites, J. C., Tucci, M. A., & Geiger, D. R. (1987). Glyphosate Effects on Carbon Assimilation, Ribulose Bisphosphate Carboxylase Activity, and Metabolite Levels in Sugar Beet Leaves. Plant Physiology, 85(2), 370-374. doi:10.1104/pp.85.2.370 es_ES
dc.description.references Zhu, J., Patzoldt, W. L., Shealy, R. T., Vodkin, L. O., Clough, S. J., & Tranel, P. J. (2008). Transcriptome Response to Glyphosate in Sensitive and Resistant Soybean. Journal of Agricultural and Food Chemistry, 56(15), 6355-6363. doi:10.1021/jf801254e es_ES
dc.description.references Marc, J., Mulner-Lorillon, O., & Bellé, R. (2004). Glyphosate-based pesticides affect cell cycle regulation. Biology of the Cell, 96(3), 245-249. doi:10.1016/j.biolcel.2003.11.010 es_ES
dc.description.references Wek, R. C., Jiang, H.-Y., & Anthony, T. G. (2006). Coping with stress: eIF2 kinases and translational control. Biochemical Society Transactions, 34(1), 7-11. doi:10.1042/bst0340007 es_ES
dc.description.references Hinnebusch, A. G. (2005). TRANSLATIONAL REGULATION OFGCN4AND THE GENERAL AMINO ACID CONTROL OF YEAST. Annual Review of Microbiology, 59(1), 407-450. doi:10.1146/annurev.micro.59.031805.133833 es_ES
dc.description.references Zhang, Y., Dickinson, J. R., Paul, M. J., & Halford, N. G. (2003). Molecular cloning of an arabidopsis homologue of GCN2, a protein kinase involved in co-ordinated response to amino acid starvation. Planta, 217(4), 668-675. doi:10.1007/s00425-003-1025-4 es_ES
dc.description.references Zhang, Y., Wang, Y., Kanyuka, K., Parry, M. A. J., Powers, S. J., & Halford, N. G. (2008). GCN2-dependent phosphorylation of eukaryotic translation initiation factor-2α in Arabidopsis. Journal of Experimental Botany, 59(11), 3131-3141. doi:10.1093/jxb/ern169 es_ES
dc.description.references Lageix, S., Lanet, E., Pouch-Pélissier, M.-N., Espagnol, M.-C., Robaglia, C., Deragon, J.-M., & Pélissier, T. (2008). Arabidopsis eIF2α kinase GCN2 is essential for growth in stress conditions and is activated by wounding. BMC Plant Biology, 8(1), 134. doi:10.1186/1471-2229-8-134 es_ES
dc.description.references Shaikhin, S. M., Smailov, S. K., Lee, A. V., Kozhanov, E. V., & Iskakov, B. K. (1992). Interaction of wheat germ translation initiation factor 2 with GDP and GTP. Biochimie, 74(5), 447-454. doi:10.1016/0300-9084(92)90085-s es_ES
dc.description.references Krishna, V. M., Janaki, N., & Ramaiah, K. V. A. (1997). Wheat Germ Initiation Factor 2 (WG·eIF2) Decreases the Inhibition in Protein Synthesis and eIF2B Activity of Reticulocyte Lysates Mediated by eIF2α Phosphorylation. Archives of Biochemistry and Biophysics, 346(1), 28-36. doi:10.1006/abbi.1997.0263 es_ES
dc.description.references Immanuel, T. M., Greenwood, D. R., & MacDiarmid, R. M. (2012). A critical review of translation initiation factor eIF2α kinases in plants - regulating protein synthesis during stress. Functional Plant Biology, 39(9), 717. doi:10.1071/fp12116 es_ES
dc.description.references Byrne, E. H., Prosser, I., Muttucumaru, N., Curtis, T. Y., Wingler, A., Powers, S., & Halford, N. G. (2011). Overexpression of GCN2-type protein kinase in wheat has profound effects on free amino acid concentration and gene expression. Plant Biotechnology Journal, 10(3), 328-340. doi:10.1111/j.1467-7652.2011.00665.x es_ES
dc.description.references Das, M., Reichman, J. R., Haberer, G., Welzl, G., Aceituno, F. F., Mader, M. T., … Olszyk, D. M. (2009). A composite transcriptional signature differentiates responses towards closely related herbicides in Arabidopsis thaliana and Brassica napus. Plant Molecular Biology, 72(4-5), 545-556. doi:10.1007/s11103-009-9590-y es_ES
dc.description.references Yuan, J. S., Tranel, P. J., & Stewart, C. N. (2007). Non-target-site herbicide resistance: a family business. Trends in Plant Science, 12(1), 6-13. doi:10.1016/j.tplants.2006.11.001 es_ES
dc.description.references Peng, Y., Abercrombie, L. L., Yuan, J. S., Riggins, C. W., Sammons, R. D., Tranel, P. J., & Stewart, C. N. (2010). Characterization of the horseweed (Conyza canadensis) transcriptome using GS-FLX 454 pyrosequencing and its application for expression analysis of candidate non-target herbicide resistance genes. Pest Management Science, 66(10), 1053-1062. doi:10.1002/ps.2004 es_ES
dc.description.references Baena-González, E. (2010). Energy Signaling in the Regulation of Gene Expression during Stress. Molecular Plant, 3(2), 300-313. doi:10.1093/mp/ssp113 es_ES
dc.description.references Vivancos, P. D., Driscoll, S. P., Bulman, C. A., Ying, L., Emami, K., Treumann, A., … Foyer, C. H. (2011). Perturbations of Amino Acid Metabolism Associated with Glyphosate-Dependent Inhibition of Shikimic Acid Metabolism Affect Cellular Redox Homeostasis and Alter the Abundance of Proteins Involved in Photosynthesis and Photorespiration. Plant Physiology, 157(1), 256-268. doi:10.1104/pp.111.181024 es_ES
dc.description.references Daudi, A., Cheng, Z., O’Brien, J. A., Mammarella, N., Khan, S., Ausubel, F. M., & Bolwell, G. P. (2012). The Apoplastic Oxidative Burst Peroxidase in Arabidopsis Is a Major Component of Pattern-Triggered Immunity. The Plant Cell, 24(1), 275-287. doi:10.1105/tpc.111.093039 es_ES
dc.description.references Denis, M.-H., & Delrot, S. (1993). Carrier-mediated uptake of glyphosate in broad bean (Vicia faba) via a phosphate transporter. Physiologia Plantarum, 87(4), 569-575. doi:10.1111/j.1399-3054.1993.tb02508.x es_ES
dc.description.references Hetherington, P. R., Marshall, G., Kirkwood, R. C., & Warner, J. M. (1998). Absorption and efflux of glyphosate by cell suspensions. Journal of Experimental Botany, 49(320), 527-533. doi:10.1093/jxb/49.320.527 es_ES
dc.description.references Goossens, A., Dever, T. E., Pascual-Ahuir, A., & Serrano, R. (2001). The Protein Kinase Gcn2p Mediates Sodium Toxicity in Yeast. Journal of Biological Chemistry, 276(33), 30753-30760. doi:10.1074/jbc.m102960200 es_ES
dc.description.references Muaddi, H., Majumder, M., Peidis, P., Papadakis, A. I., Holcik, M., Scheuner, D., … Koromilas, A. E. (2010). Phosphorylation of eIF2α at Serine 51 Is an Important Determinant of Cell Survival and Adaptation to Glucose Deficiency. Molecular Biology of the Cell, 21(18), 3220-3231. doi:10.1091/mbc.e10-01-0023 es_ES
dc.description.references Geiger, D. R., Kapitan, S. W., & Tucci, M. A. (1986). Glyphosate Inhibits Photosynthesis and Allocation of Carbon to Starch in Sugar Beet Leaves. Plant Physiology, 82(2), 468-472. doi:10.1104/pp.82.2.468 es_ES
dc.description.references Cummins, I., Wortley, D. J., Sabbadin, F., He, Z., Coxon, C. R., Straker, H. E., … Edwards, R. (2013). Key role for a glutathione transferase in multiple-herbicide resistance in grass weeds. Proceedings of the National Academy of Sciences, 110(15), 5812-5817. doi:10.1073/pnas.1221179110 es_ES
dc.description.references Orcaray, L., Igal, M., Marino, D., Zabalza, A., & Royuela, M. (2010). The possible role of quinate in the mode of action of glyphosate and acetolactate synthase inhibitors. Pest Management Science, 66(3), 262-269. doi:10.1002/ps.1868 es_ES
dc.description.references Orcaray, L., Zulet, A., Zabalza, A., & Royuela, M. (2012). Impairment of carbon metabolism induced by the herbicide glyphosate. Journal of Plant Physiology, 169(1), 27-33. doi:10.1016/j.jplph.2011.08.009 es_ES
dc.description.references Li, M.-W., AuYeung, W.-K., & Lam, H.-M. (2012). The GCN2 homologue inArabidopsis thalianainteracts with uncharged tRNA and uses Arabidopsis eIF2α molecules as direct substrates. Plant Biology, 15(1), 13-18. doi:10.1111/j.1438-8677.2012.00606.x es_ES
dc.description.references Ge, X., d’ Avignon, D. A., Ackerman, J. J. H., & Sammons, R. D. (2014). In Vivo 31P-Nuclear Magnetic Resonance Studies of Glyphosate Uptake, Vacuolar Sequestration, and Tonoplast Pump Activity in Glyphosate-Resistant Horseweed. PLANT PHYSIOLOGY, 166(3), 1255-1268. doi:10.1104/pp.114.247197 es_ES
dc.description.references Feng, P. C. C., Chiu, T., & Douglas Sammons, R. (2003). Glyphosate efficacy is contributed by its tissue concentration and sensitivity in velvetleaf (Abutilon theophrasti). Pesticide Biochemistry and Physiology, 77(3), 83-91. doi:10.1016/j.pestbp.2003.08.005 es_ES
dc.description.references Koger, C. H., & Reddy, K. N. (2005). Role of absorption and translocation in the mechanism of glyphosate resistance in horseweed (Conyza canadensis). Weed Science, 53(1), 84-89. doi:10.1614/ws-04-102r es_ES
dc.description.references Perez-Jones, A., Park, K. W., Colquhoun, J., Mallory-Smith, C., & Shaner, D. (2005). Identification of glyphosate-resistant Italian ryegrass (Lolium multiflorum) in Oregon. Weed Science, 53(6), 775-779. doi:10.1614/ws-04-200r.1 es_ES
dc.description.references Morin, F., Vera, V., Nurit, F., Tissut, M., & Marigo, G. (1997). Glyphosate Uptake inCatharanthus roseusCells: Role of a Phosphate Transporter. Pesticide Biochemistry and Physiology, 58(1), 13-22. doi:10.1006/pest.1997.2280 es_ES
dc.description.references Jander, G., Baerson, S. R., Hudak, J. A., Gonzalez, K. A., Gruys, K. J., & Last, R. L. (2003). Ethylmethanesulfonate Saturation Mutagenesis in Arabidopsis to Determine Frequency of Herbicide Resistance. Plant Physiology, 131(1), 139-146. doi:10.1104/pp.102.010397 es_ES
dc.description.references Brotherton, J. E., Jeschke, M. R., Tranel, P. J., & Widholm, J. M. (2007). Identification of Arabidopsis thaliana variants with differential glyphosate responses. Journal of Plant Physiology, 164(10), 1337-1345. doi:10.1016/j.jplph.2006.08.008 es_ES
dc.description.references Forment, J., Gadea, J., Huerta, L., Abizanda, L., Agusti, J., Alamar, S., … Beltran, J. P. (2005). Development of a citrus genome-wide EST collection and cDNA microarray as resources for genomic studies. Plant Molecular Biology, 57(3), 375-391. doi:10.1007/s11103-004-7926-1 es_ES
dc.description.references Medina, I., Carbonell, J., Pulido, L., Madeira, S. C., Goetz, S., Conesa, A., … Dopazo, J. (2010). Babelomics: an integrative platform for the analysis of transcriptomics, proteomics and genomic data with advanced functional profiling. Nucleic Acids Research, 38(suppl_2), W210-W213. doi:10.1093/nar/gkq388 es_ES
dc.description.references Tusher, V. G., Tibshirani, R., & Chu, G. (2001). Significance analysis of microarrays applied to the ionizing radiation response. Proceedings of the National Academy of Sciences, 98(9), 5116-5121. doi:10.1073/pnas.091062498 es_ES
dc.description.references Koger, C. H., Shaner, D. L., Krutz, L. J., Walker, T. W., Buehring, N., Henry, W. B., … Wilcut, J. W. (2005). Rice (Oryza sativa) response to drift rates of glyphosate. Pest Management Science, 61(12), 1161-1167. doi:10.1002/ps.1113 es_ES
dc.description.references Flexas, J., Ortuño, M. F., Ribas-Carbo, M., Diaz-Espejo, A., Flórez-Sarasa, I. D., & Medrano, H. (2007). Mesophyll conductance to CO2in Arabidopsis thaliana. New Phytologist, 175(3), 501-511. doi:10.1111/j.1469-8137.2007.02111.x es_ES
dc.description.references Genty, B., Briantais, J.-M., & Baker, N. R. (1989). The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochimica et Biophysica Acta (BBA) - General Subjects, 990(1), 87-92. doi:10.1016/s0304-4165(89)80016-9 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem