- -

Microstructural characterisation of Ti-Nb-(Fe-Cr) alloys obtained by powder metallurgy

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Microstructural characterisation of Ti-Nb-(Fe-Cr) alloys obtained by powder metallurgy

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Amigó Mata, Angèlica es_ES
dc.contributor.author Zambrano, Jenny Cecilia es_ES
dc.contributor.author Martínez, S. es_ES
dc.contributor.author Amigó Borrás, Vicente es_ES
dc.date.accessioned 2016-03-03T11:36:13Z
dc.date.available 2016-03-03T11:36:13Z
dc.date.issued 2014-12
dc.identifier.issn 0032-5899
dc.identifier.uri http://hdl.handle.net/10251/61399
dc.description.abstract [EN] beta alloys based on the Ti Nb alloy system are of growing interest to the biomaterial community. The addition of small amounts of Fe and Cr further increases beta-phase stability, improving the properties of Ti Nb alloy. However, PM materials sintered from elemental powders are inhomogeneous due to restricted solid state diffusion and mechanical alloying provides a route to enhance mixing and lemental diffusion. The microstructural characteristics and bend strength of Ti Nb (Fe Cr) alloys obtained from elemental powder mixture and mechanical alloyed powders are compared. Mechanical alloying gives more homogeneous compositions and particle morphology, characterised by rounded, significantly enlarged particles. In the sintered samples alpha and beta phase are observed. The alpha phase appears at the grain boundaries and in lamellae growing inward from the edge, and is depleted in Nb. The b phase is enriched with Nb, Fe and Cr. The addition of Fe and Cr significantly increases the mechanical properties of Ti Nb alloys, providing increased ductility. es_ES
dc.description.sponsorship This paper is based on a presentation at Euro PM 2014, organised by EPMA in Salzburg, Austria on 21-24 September 2014. This work was funded by UPV by the Staff Training Program for Predoctoral Researchers dated 28 February 2014. The Ministry of Science and Innovation of Spain by project research MAT2011-28492-C03 and Generalitat Valenciana by ACOMP / 2014/151.
dc.language Inglés es_ES
dc.publisher Maney Publishing es_ES
dc.relation.ispartof Powder Metallurgy es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject MIcrostructure es_ES
dc.subject Titanium Alloys es_ES
dc.subject Powder Metallurgy es_ES
dc.subject Flexural test es_ES
dc.subject.classification CIENCIA DE LOS MATERIALES E INGENIERIA METALURGICA es_ES
dc.title Microstructural characterisation of Ti-Nb-(Fe-Cr) alloys obtained by powder metallurgy es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1179/0032589914Z.000000000210
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//MAT2011-28492-C03/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//ACOMP%2F2014%2F151/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Tecnología de Materiales - Institut de Tecnologia de Materials es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials es_ES
dc.description.bibliographicCitation Amigó Mata, A.; Zambrano, JC.; Martínez, S.; Amigó Borrás, V. (2014). Microstructural characterisation of Ti-Nb-(Fe-Cr) alloys obtained by powder metallurgy. Powder Metallurgy. 57(5):316-319. https://doi.org/10.1179/0032589914Z.000000000210 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1179/0032589914Z.000000000210 es_ES
dc.description.upvformatpinicio 316 es_ES
dc.description.upvformatpfin 319 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 57 es_ES
dc.description.issue 5 es_ES
dc.relation.senia 277625 es_ES
dc.identifier.eissn 1743-2901
dc.contributor.funder Ministerio de Ciencia e Innovación
dc.contributor.funder Generalitat Valenciana
dc.contributor.funder Universitat Politècnica de València es_ES
dc.description.references Niinomi, M. (1998). Mechanical properties of biomedical titanium alloys. Materials Science and Engineering: A, 243(1-2), 231-236. doi:10.1016/s0921-5093(97)00806-x es_ES
dc.description.references Wen, M., Wen, C., Hodgson, P., & Li, Y. (2014). Fabrication of Ti–Nb–Ag alloy via powder metallurgy for biomedical applications. Materials & Design (1980-2015), 56, 629-634. doi:10.1016/j.matdes.2013.11.066 es_ES
dc.description.references Cremasco, A., Messias, A. D., Esposito, A. R., Duek, E. A. de R., & Caram, R. (2011). Effects of alloying elements on the cytotoxic response of titanium alloys. Materials Science and Engineering: C, 31(5), 833-839. doi:10.1016/j.msec.2010.12.013 es_ES
dc.description.references Kuroda, D., Niinomi, M., Morinaga, M., Kato, Y., & Yashiro, T. (1998). Design and mechanical properties of new β type titanium alloys for implant materials. Materials Science and Engineering: A, 243(1-2), 244-249. doi:10.1016/s0921-5093(97)00808-3 es_ES
dc.description.references Málek, J., Hnilica, F., Veselý, J., & Smola, B. (2013). Heat treatment and mechanical properties of powder metallurgy processed Ti–35.5Nb–5.7Ta beta-titanium alloy. Materials Characterization, 84, 225-231. doi:10.1016/j.matchar.2013.08.006 es_ES
dc.description.references Boyer R, Welsch G and Collings E: ‘Materials properties handbook: titanium alloys’; 1994, Materials Park, OH, ASM International. es_ES
dc.description.references Yang, Y. L., Wang, W. Q., Li, F. L., Li, W. Q., & Zhang, Y. Q. (2009). The Effect of Aluminum Equivalent and Molybdenum Equivalent on the Mechanical Properties of High Strength and High Toughness Titanium Alloys. Materials Science Forum, 618-619, 169-172. doi:10.4028/www.scientific.net/msf.618-619.169 es_ES
dc.description.references Terayama, A., Fuyama, N., Yamashita, Y., Ishizaki, I., & Kyogoku, H. (2013). Fabrication of Ti–Nb alloys by powder metallurgy process and their shape memory characteristics. Journal of Alloys and Compounds, 577, S408-S412. doi:10.1016/j.jallcom.2011.12.166 es_ES
dc.description.references Liu, Y., Chen, L. F., Tang, H. P., Liu, C. T., Liu, B., & Huang, B. Y. (2006). Design of powder metallurgy titanium alloys and composites. Materials Science and Engineering: A, 418(1-2), 25-35. doi:10.1016/j.msea.2005.10.057 es_ES
dc.description.references Bidaux, J.-E., Closuit, C., Rodriguez-Arbaizar, M., Zufferey, D., & Carreño-Morelli, E. (2013). Metal injection moulding of low modulus Ti–Nb alloys for biomedical applications. Powder Metallurgy, 56(4), 263-266. doi:10.1179/0032589913z.000000000118 es_ES
dc.description.references Zhao, D., Chang, K., Ebel, T., Qian, M., Willumeit, R., Yan, M., & Pyczak, F. (2014). Titanium carbide precipitation in Ti–22Nb alloy fabricated by metal injection moulding. Powder Metallurgy, 57(1), 2-4. doi:10.1179/0032589914z.000000000153 es_ES
dc.description.references Zou, L. M., Yang, C., Long, Y., Xiao, Z. Y., & Li, Y. Y. (2012). Fabrication of biomedical Ti–35Nb–7Zr–5Ta alloys by mechanical alloying and spark plasma sintering. Powder Metallurgy, 55(1), 65-70. doi:10.1179/1743290111y.0000000021 es_ES
dc.description.references Suryanarayana, C. (2001). Mechanical alloying and milling. Progress in Materials Science, 46(1-2), 1-184. doi:10.1016/s0079-6425(99)00010-9 es_ES
dc.description.references EN ISO-3325·2000: ‘Sintered metal materials, excluding hardmetals. Determination of transverse rupture strength’. es_ES
dc.description.references Afonso, C. R. M., Aleixo, G. T., Ramirez, A. J., & Caram, R. (2007). Influence of cooling rate on microstructure of Ti–Nb alloy for orthopedic implants. Materials Science and Engineering: C, 27(4), 908-913. doi:10.1016/j.msec.2006.11.001 es_ES
dc.description.references Zhao, D., Chang, K., Ebel, T., Qian, M., Willumeit, R., Yan, M., & Pyczak, F. (2013). Microstructure and mechanical behavior of metal injection molded Ti–Nb binary alloys as biomedical material. Journal of the Mechanical Behavior of Biomedical Materials, 28, 171-182. doi:10.1016/j.jmbbm.2013.08.013 es_ES
dc.description.references Angelo PC and Subramanian R: ‘Powder metallurgy: science, technology and applications’, 1–5, 105–109, 132–133; 2009, New Delhi, PHI Learning. es_ES
dc.description.references Lee, C. M., Ju, C. P., & Chern Lin, J. H. (2002). Structure-property relationship of cast Ti-Nb alloys. Journal of Oral Rehabilitation, 29(4), 314-322. doi:10.1046/j.1365-2842.2002.00825.x es_ES
dc.description.references Lagos, M. A., & Agote, I. (2013). SPS synthesis and consolidation of TiAl alloys from elemental powders: Microstructure evolution. Intermetallics, 36, 51-56. doi:10.1016/j.intermet.2013.01.006 es_ES
dc.description.references Majumdar, P., Singh, S. B., & Chakraborty, M. (2008). Elastic modulus of biomedical titanium alloys by nano-indentation and ultrasonic techniques—A comparative study. Materials Science and Engineering: A, 489(1-2), 419-425. doi:10.1016/j.msea.2007.12.029 es_ES
dc.description.references Kim, H.-S., Kim, W.-Y., & Lim, S.-H. (2006). Microstructure and elastic modulus of Ti–Nb–Si ternary alloys for biomedical applications. Scripta Materialia, 54(5), 887-891. doi:10.1016/j.scriptamat.2005.11.001 es_ES
dc.description.references Souza, S. A., Manicardi, R. B., Ferrandini, P. L., Afonso, C. R. M., Ramirez, A. J., & Caram, R. (2010). Effect of the addition of Ta on microstructure and properties of Ti–Nb alloys. Journal of Alloys and Compounds, 504(2), 330-340. doi:10.1016/j.jallcom.2010.05.134 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem