- -

Ketonic decarboxylation reaction mechanism: A combined experimental and DFT study

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Ketonic decarboxylation reaction mechanism: A combined experimental and DFT study

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Pulido Junquera, Maria Angeles es_ES
dc.contributor.author Oliver Tomás, Borja es_ES
dc.contributor.author Renz, Michael es_ES
dc.contributor.author Boronat Zaragoza, Mercedes es_ES
dc.contributor.author Corma Canós, Avelino es_ES
dc.date.accessioned 2016-03-07T13:24:33Z
dc.date.issued 2013
dc.identifier.issn 1864-5631
dc.identifier.uri http://hdl.handle.net/10251/61529
dc.description.abstract The ketonic decarboxylation of carboxylic acids has been carried out experimentally and studied theoretically by DFT calculations. In the experiments, monoclinic zirconia was identified as a good catalyst, giving high activity and high selectivity when compared with other potential catalysts, such as silica, alumina, or ceria. It was also shown that it could be used for a wide range of substrates, namely, for carboxylic acids with two to eighteen carbon atoms. The reaction mechanism for the ketonic decarboxylation of acetic acid over monoclinic zirconia was investigated by using a periodic DFT slab model. A reaction pathway with the formation of a β-keto acid intermediate was considered, as well as a concerted mechanism, involving simultaneous carbon-carbon bond formation and carbon dioxide elimination. DFT results showed that the mechanism with the β-keto acid was the kinetically favored one and this was further supported by an experiment employing a mixture of isomeric (linear and branched) pentanoic acids. This way or that? Monoclinic zirconia has great potential as a catalyst for ketonic decarboxylation of carboxylic acids (see picture). A combined experimental and DFT study shows a route involving a β-keto acid intermediate as the kinetically preferred reaction pathway. es_ES
dc.description.sponsorship We thank MINECO (MAT2011-28009, Consolider Ingenio 2010-MULTICAT, CSD2009-00050 and CTQ2011-27550) and the Spanish National Research Council (CSIC, Es 2010RU0108) for funding. Red Espanola de Supercomputacion (RES) and Centre de Calcul de la Universitat de Valencia are acknowledged for computational facilities and technical assistance. A. P. and B.O.-T. thank MINECO (Juan de la Cierva Programme) and CSIC (JAE Programme), respectively, for their fellowships. en_EN
dc.language Inglés es_ES
dc.publisher Wiley-VCH Verlag es_ES
dc.relation.ispartof ChemSusChem es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject ab initio calculations es_ES
dc.subject biomass es_ES
dc.subject carboxylic acids es_ES
dc.subject heterogeneous catalysis es_ES
dc.subject ketones es_ES
dc.subject.classification QUIMICA INORGANICA es_ES
dc.subject.classification QUIMICA ORGANICA es_ES
dc.title Ketonic decarboxylation reaction mechanism: A combined experimental and DFT study es_ES
dc.type Artículo es_ES
dc.embargo.lift 10000-01-01
dc.embargo.terms forever es_ES
dc.identifier.doi 10.1002/cssc.201200419
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//CSD2009-00050/ES/Desarrollo de catalizadores más eficientes para el diseño de procesos químicos sostenibles y produccion limpia de energia/ / es_ES
dc.relation.projectID info:eu-repo/grantAgreement/CSIC//2010RU0108/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//CTQ2011-27550/ES/TRANSFORMACION CATALITICA DE BIOMASA EN DIESEL Y EN PRODUCTOS QUIMICOS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MAT2011-28009/ES/CATALIZADORES MONO- Y MULTIFUNCIONALES BASADOS EN NANOPARTICULAS METALICAS DIRIGIDOS A TRANSFORMACIONES SECUENCIALES O REACCIONES EN CASCADA/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.description.bibliographicCitation Pulido Junquera, MA.; Oliver Tomás, B.; Renz, M.; Boronat Zaragoza, M.; Corma Canós, A. (2013). Ketonic decarboxylation reaction mechanism: A combined experimental and DFT study. ChemSusChem. 6(1):141-151. https://doi.org/10.1002/cssc.201200419 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1002/cssc.201200419 es_ES
dc.description.upvformatpinicio 141 es_ES
dc.description.upvformatpfin 151 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 6 es_ES
dc.description.issue 1 es_ES
dc.relation.senia 257996 es_ES
dc.identifier.eissn 1864-564X
dc.contributor.funder Consejo Superior de Investigaciones Científicas es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Huber, G. W., Iborra, S., & Corma, A. (2006). Synthesis of Transportation Fuels from Biomass:  Chemistry, Catalysts, and Engineering. Chemical Reviews, 106(9), 4044-4098. doi:10.1021/cr068360d es_ES
dc.description.references Corma, A., Renz, M., & Schaverien, C. (2008). Coupling Fatty Acids by Ketonic Decarboxylation Using Solid Catalysts for the Direct Production of Diesel, Lubricants, and Chemicals. ChemSusChem, 1(8-9), 739-741. doi:10.1002/cssc.200800103 es_ES
dc.description.references Alonso, D. M., Bond, J. Q., & Dumesic, J. A. (2010). Catalytic conversion of biomass to biofuels. Green Chemistry, 12(9), 1493. doi:10.1039/c004654j es_ES
dc.description.references S. L. Malhotra R. W. Wong M. P. Breton Xerox Corporation 2002 es_ES
dc.description.references A. D. Tomlinson Unilever PLC 2001 es_ES
dc.description.references W. Seipel H. Hensen N. Boyxen Cognis Deutschland GmbH 2001 es_ES
dc.description.references Friedel, C. (1858). Ueber s. g. gemischte Acetone. Annalen der Chemie und Pharmacie, 108(1), 122-125. doi:10.1002/jlac.18581080124 es_ES
dc.description.references H. Froehlich M. Schneider W. Himmele M. Strohmeyer G. Sandrock K. Baer 1979 es_ES
dc.description.references Neunhoeffer, O., & Paschke, P. (1939). Über den Mechanismus der Ketonbildung aus Carbonsäuren. Berichte der deutschen chemischen Gesellschaft (A and B Series), 72(4), 919-929. doi:10.1002/cber.19390720442 es_ES
dc.description.references Bayer & Co 1911 es_ES
dc.description.references C. A. Smith L. F. Theiling   Jr. 1979 es_ES
dc.description.references Rand, L., Wagner, W., Warner, P. O., & Kovac, L. R. (1962). Reactions Catalyzed by Potassium Fluoride. II. The Conversion of Adipic Acid to Cyclopentanone. The Journal of Organic Chemistry, 27(3), 1034-1035. doi:10.1021/jo01050a504 es_ES
dc.description.references V. I. Yakerson A. M. Rubinshtein L. A. Gorskaya 1970 es_ES
dc.description.references Renz, M. (2005). Ketonization of Carboxylic Acids by Decarboxylation: Mechanism and Scope. European Journal of Organic Chemistry, 2005(6), 979-988. doi:10.1002/ejoc.200400546 es_ES
dc.description.references H. Lermer W. Hoelderich M. Schwarzmann 1986 es_ES
dc.description.references Serrano-Ruiz, J. C., Wang, D., & Dumesic, J. A. (2010). Catalytic upgrading of levulinic acid to 5-nonanone. Green Chemistry, 12(4), 574. doi:10.1039/b923907c es_ES
dc.description.references W. A. Beavers 2007 es_ES
dc.description.references Gliński, M., Kijeński, J., & Jakubowski, A. (1995). Ketones from monocarboxylic acids: Catalytic ketonization over oxide systems. Applied Catalysis A: General, 128(2), 209-217. doi:10.1016/0926-860x(95)00082-8 es_ES
dc.description.references A. Westfechtel C. Breucker B. Gutsche L. Jeromin H. Eierdanz H. Baumann K. H. Schmid W. Nonnenkamp 1993 es_ES
dc.description.references Martinez, R. (2004). Ketonization of acetic acid on titania-functionalized silica monoliths. Journal of Catalysis, 222(2), 404-409. doi:10.1016/j.jcat.2003.12.002 es_ES
dc.description.references Parida, K., & Mishra, H. K. (1999). Catalytic ketonisation of acetic acid over modified zirconia. Journal of Molecular Catalysis A: Chemical, 139(1), 73-80. doi:10.1016/s1381-1169(98)00184-8 es_ES
dc.description.references Ignatchenko, A. V., & Kozliak, E. I. (2012). Distinguishing Enolic and Carbonyl Components in the Mechanism of Carboxylic Acid Ketonization on Monoclinic Zirconia. ACS Catalysis, 2(8), 1555-1562. doi:10.1021/cs3002989 es_ES
dc.description.references Miller, A. L., Cook, N. C., & Whitmore, F. C. (1950). The Ketonic Decarboxylation Reaction1: The Ketonic Decarboxylation of Trimethylacetic Acid2and Isobutyric Acid. Journal of the American Chemical Society, 72(6), 2732-2735. doi:10.1021/ja01162a107 es_ES
dc.description.references Sugiyama, S., Sato, K., Yamasaki, S., Kawashiro, K., & Hayashi, H. (1992). Ketones from carboxylic acids over supported magnesium oxide and related catalysts. Catalysis Letters, 14(1), 127-133. doi:10.1007/bf00764227 es_ES
dc.description.references Pestman, R., Koster, R. M., van Duijne, A., Pieterse, J. A. Z., & Ponec, V. (1997). Reactions of Carboxylic Acids on Oxides. Journal of Catalysis, 168(2), 265-272. doi:10.1006/jcat.1997.1624 es_ES
dc.description.references Cowan, D. M., Jeffery, G. H., & Vogel, A. I. (1940). 31. Physical properties and chemical constitution. Part V. Alkyl ketones. Journal of the Chemical Society (Resumed), 171. doi:10.1039/jr9400000171 es_ES
dc.description.references G. P. Hussmann 1988 es_ES
dc.description.references Müller-Erlwein, E., & Rosenberger, F. B. (1990). Heterogen katalysierte Ketonisierung von Laurin- und Stearinsäure in der Gasphase. Chemie Ingenieur Technik, 62(6), 512-513. doi:10.1002/cite.330620621 es_ES
dc.description.references F. Wattimena 1983 es_ES
dc.description.references Rajadurai, S. (1994). Pathways for Carboxylic Acid Decomposition on Transition Metal Oxides. Catalysis Reviews, 36(3), 385-403. doi:10.1080/01614949408009466 es_ES
dc.description.references Cressely, J., Farkhani, D., Deluzarche, A., & Kiennemann, A. (1984). Evolution des especes carboxylates dans le cadre des syntheses CO-H2. Reduction de l’acide acetique sur systeme Co, Cu, Fe. Materials Chemistry and Physics, 11(5), 413-431. doi:10.1016/0254-0584(84)90065-8 es_ES
dc.description.references KURIACOSE, J. (1977). Studies on the surface interaction of acetic acid on iron oxide. Journal of Catalysis, 50(2), 330-341. doi:10.1016/0021-9517(77)90042-2 es_ES
dc.description.references LORENZELLI, V. (1980). Infrared study of the surface reactivity of hematite. Journal of Catalysis, 66(1), 28-35. doi:10.1016/0021-9517(80)90004-4 es_ES
dc.description.references Müller-Erlwein, E. (1990). Heterogen katalysierte Ketonisierung von Laurin- und Stearinsäure in Flüssigphase. Chemie Ingenieur Technik, 62(5), 416-417. doi:10.1002/cite.330620518 es_ES
dc.description.references Gooßen, L. J., Mamone, P., & Oppel, C. (2010). Catalytic Decarboxylative Cross-Ketonisation of Aryl- and Alkylcarboxylic Acids using Magnetite Nanoparticles. Advanced Synthesis & Catalysis, 353(1), 57-63. doi:10.1002/adsc.201000429 es_ES
dc.description.references Hites, R. A., & Biemann, K. (1972). Mechanism of ketonic decarboxylation. Pyrolysis of calcium decanoate. Journal of the American Chemical Society, 94(16), 5772-5777. doi:10.1021/ja00771a039 es_ES
dc.description.references Ignatchenko, A., Nealon, D. G., Dushane, R., & Humphries, K. (2006). Interaction of water with titania and zirconia surfaces. Journal of Molecular Catalysis A: Chemical, 256(1-2), 57-74. doi:10.1016/j.molcata.2006.04.031 es_ES
dc.description.references Ignatchenko, A. V. (2011). Density Functional Theory Study of Carboxylic Acids Adsorption and Enolization on Monoclinic Zirconia Surfaces. The Journal of Physical Chemistry C, 115(32), 16012-16018. doi:10.1021/jp203381h es_ES
dc.description.references Korhonen, S. T., Calatayud, M., & Krause, A. O. I. (2008). Stability of Hydroxylated (1̄11) and (1̄01) Surfaces of Monoclinic Zirconia:  A Combined Study by DFT and Infrared Spectroscopy. The Journal of Physical Chemistry C, 112(16), 6469-6476. doi:10.1021/jp8008546 es_ES
dc.description.references SERRANORUIZ, J., LUETTICH, J., SEPULVEDAESCRIBANO, A., & RODRIGUEZREINOSO, F. (2006). Effect of the support composition on the vapor-phase hydrogenation of crotonaldehyde over Pt/CexZr1−xO2 catalysts. Journal of Catalysis, 241(1), 45-55. doi:10.1016/j.jcat.2006.04.006 es_ES
dc.description.references Murnaghan, F. D. (1944). The Compressibility of Media under Extreme Pressures. Proceedings of the National Academy of Sciences, 30(9), 244-247. doi:10.1073/pnas.30.9.244 es_ES
dc.description.references Birch, F. (1947). Finite Elastic Strain of Cubic Crystals. Physical Review, 71(11), 809-824. doi:10.1103/physrev.71.809 es_ES
dc.description.references Kresse, G., & Furthmüller, J. (1996). Efficient iterative schemes forab initiototal-energy calculations using a plane-wave basis set. Physical Review B, 54(16), 11169-11186. doi:10.1103/physrevb.54.11169 es_ES
dc.description.references Perdew, J. P., & Wang, Y. (1992). Accurate and simple analytic representation of the electron-gas correlation energy. Physical Review B, 45(23), 13244-13249. doi:10.1103/physrevb.45.13244 es_ES
dc.description.references Perdew, J. P., Chevary, J. A., Vosko, S. H., Jackson, K. A., Pederson, M. R., Singh, D. J., & Fiolhais, C. (1992). Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. Physical Review B, 46(11), 6671-6687. doi:10.1103/physrevb.46.6671 es_ES
dc.description.references Blöchl, P. E. (1994). Projector augmented-wave method. Physical Review B, 50(24), 17953-17979. doi:10.1103/physrevb.50.17953 es_ES
dc.description.references Kresse, G., & Joubert, D. (1999). From ultrasoft pseudopotentials to the projector augmented-wave method. Physical Review B, 59(3), 1758-1775. doi:10.1103/physrevb.59.1758 es_ES
dc.description.references Christensen, A., & Carter, E. A. (1998). First-principles study of the surfaces of zirconia. Physical Review B, 58(12), 8050-8064. doi:10.1103/physrevb.58.8050 es_ES
dc.description.references Henkelman, G., & Jónsson, H. (1999). A dimer method for finding saddle points on high dimensional potential surfaces using only first derivatives. The Journal of Chemical Physics, 111(15), 7010-7022. doi:10.1063/1.480097 es_ES
dc.description.references Henkelman, G., & Jónsson, H. (2000). Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points. The Journal of Chemical Physics, 113(22), 9978-9985. doi:10.1063/1.1323224 es_ES
dc.description.references Grimme, S., Antony, J., Ehrlich, S., & Krieg, H. (2010). A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. The Journal of Chemical Physics, 132(15), 154104. doi:10.1063/1.3382344 es_ES
dc.description.references http://toc.uni-muenster.de/DFTD3/ es_ES
dc.description.references Barteau, M. A. (1996). Organic Reactions at Well-Defined Oxide Surfaces. Chemical Reviews, 96(4), 1413-1430. doi:10.1021/cr950222t es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem